首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Previous studies revealed that expression and activation of cyclooxygenase-2 (Cox-2) conveyed a protective principle in murine macrophages, thus attenuating pro-apoptotic actions of chemotherapeutic agents or programmed cell death as a result of massive nitric oxide (NO) generation. Expression of Cox-2 was achieved by treatment of cells with lipopolysaccharide/interferon- or nontoxic doses of NO releasing agents. We reasoned E-type prostanoid formation, and in turn an intracellular cAMP increase as the underlying protective mechanism. To prove our hypothesis, we analyzed the effects of lipophilic cAMP-analogs on NO, cisplatin, or etoposide induced apoptosis in RAW 264.7 macrophages. Selected apoptotic parameters comprised DNA fragmentation (diphenylamine assay), annexin V staining of phosphatidylserine, caspase activity (quantitated by the cleavage of a fluorogenic caspase-3-like substrate Ac-DEVD-AMC), and mitochondrial membrane depolarisation (). Western blots detected accumulation of the tumor suppressor protein p53, relocation of cytochrome c to the cytosol, and expression of the anti-apoptotic protein Bcl-xL. Prestimulation with lipophilic cAMP-analogs attenuated apoptosis with the notion that cell death parameters were basically absent. To verify gene induction by cAMP in association with protection we established activation of cAMP response element binding protein (CREB) by gel-shift analysis and moreover, treated macrophages with oligonucleotides containing a cAMP-responsive element (CRE) in order to scavenge CREB. Decoy oligonucleotides, but not control oligonucleotides, attenuated cAMP-evoked protection and reestablished pro-apoptotic parameters. We conclude that gene induction by cAMP protects macrophages towards apoptosis that occurs as a result of excessive NO formation or addition of chemotherapeutica. Attenuating programmed cell death by the cAMP-signaling system may be found in association with Cox-2 expression and tumor formation.  相似文献   

2.
Programmed death (apoptosis) of the rat myelocytic leukemic cell line IPC-81 was triggered by cyclic adenosine monophosphate (cAMP) analogs or by agents (cholera toxin, prostaglandins) increasing the endogenous cAMP level. The induction of cell death by cholera toxin was preceded by increased activation of cAMP-kinase. Cell lysis started already 5 hr after cAMP challenge and was preceded by internucleosomal DNA fragmentation and morphological changes characteristic of apoptosis. The cell suicide could be prevented by inhibitors of macromolecular synthesis. cAMP analogs induced cell death in a positively cooperative manner (apparent Hill coefficient of 2.9), indicating that triggering of the apoptotic process was under stringent control. There was a strong synergism between cAMP analogs complementing each other in the activation of cAMP-dependent protein kinase I (cAKI). No such synergism was noted for analogs complementing each other in the activation of cAKII. It is concluded that apoptosis can be induced solely by activation of cAKI. The IPC-81 cells expressed about four times more cAKI than cAKII. The expression of cAK subunits, on the protein and mRNA levels, was only minimally affected by cholera toxin treatment.  相似文献   

3.
Prostaglandin E2 (PGE2) is the major cyclooxygenase metabolite in macrophages with complex proinflammatory and immunoregulatory properties. In the present study, we have compared the modulatory role of PGE2/cAMP-dependent signaling on induced nitric oxide (NO) production in two murine macrophages, J774 and RAW 264.7. With no effect on NO release by itself, PGE2 co-addition with lipopolysaccharide (LPS) resulted in a concentration-dependent enhancement in NO release and inducible NO synthase induction in J774, but not in RAW 264.7, macrophages. The potentiation effect of PGE2 in J774 cells was still seen when applied within 9 h after LPS treatment. Whereas RAW 264.7 macrophages release PGE2 with greater extent than J774 macrophages in response to LPS, indomethacin and NS-398, upon abolishing LPS-induced PGE2 release, caused a more obvious inhibition of NO release from J774 than RAW 264.7 cells. Thus, we suggest a higher positive modulatory role of PGE2--either endogenous or exogenous--on NO formation in J774 cells. Supporting these findings, exogenous PGE2 triggers cAMP formation in J774 cells with higher potency and efficacy. Of interest, dBcAMP also elicits higher sensitivity in potentiating NO release in J774 cells. We conclude that the opposite effect of PGE2/cAMP signaling on macrophage NO induction depends on its signaling efficacy and might be associated with the difference in endogenous PGE2 levels.  相似文献   

4.
Nuclear factor kappa-B (NF-kappa B) has been shown to play an important role in LPS-mediated induction of several genes in macrophages. Several studies have implicated protein kinase C (PKC) or cAMP-dependent protein kinase in the regulation of NF-kappa B activity. In this study we have investigated the mechanism of NF-kappa B induction in murine macrophages. A chloramphenicol acetyl transferase (CAT) expression vector containing multiple copies of the TNF-alpha NF-kappa B element was transfected into the RAW264 macrophage-like cell line and assessed for inducible CAT activity. LPS treatment of the transfected cells resulted in a significant induction of CAT activity. CAT activity was not induced by treatment with phorbol myristate acetate (PMA) or the cAMP analogue 8-bromo cAMP. To further study NF-kappa B induction, nuclear extracts were prepared from RAW264 cells. Extracts from RAW264 cells that were treated from 30 min to 2 hr with LPS had a significant increase in NF-kappa B binding activity as determined by the electrophoresis mobility shift assay (EMSA). Treatment of these cells from 30 min to 2 hr with PMA did not result in such binding activity. U.V. crosslinking analysis of the DNA-binding activity confirmed these results and indicated that LPS induced a 55 KD DNA-binding protein. Induction of this NF-kappa B binding activity was not inhibited by pretreatment with the PKC inhibitor H-7. H-7 did inhibit induction of TPA responsive element binding by either LPS or PMA. Prolonged exposure to phorbol ester, a treatment which down-regulates PKC, had no effect on LPS induction of NF-kappa B activity in these cells. These results suggest that the induction of NF-kappa B in macrophages by LPS is independent of PKC.  相似文献   

5.
6.
Nitric oxide (NO) induces apoptotic cell death in murine RAW 264.7 macrophages. To elucidate the inhibitory effects of protein kinase C (PKC) on NO-induced apoptosis, we generated clones of RAW 264.7 cells that overexpress one of the PKC isoforms and explored the possible interactions between PKC and three structurally related mitogen-activated protein (MAP) kinases in NO actions. Treatment of RAW 264.7 cells with sodium nitroprusside (SNP), a NO-generating agent, activated both c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinase, but did not activate extracellular signal-regulated kinase (ERK)-1 and ERK-2. In addition, SNP-induced apoptosis was slightly blocked by the selective p38 kinase inhibitor (SB203580) but not by the MAP/ERK1 kinase inhibitor (PD098059). PKC transfectants (PKC-beta II, -delta, and -eta) showed substantial protection from cell death induced by the exposure to NO donors such as SNP and S-nitrosoglutathione (GSNO). In contrast, in RAW 264.7 parent or in empty vector-transformed cells, these NO donors induced internucleosomal DNA cleavage. Moreover, overexpression of PKC isoforms significantly suppressed SNP-induced JNK/SAPK and p38 kinase activation, but did not affect ERK-1 and -2. We also explored the involvement of CPP32-like protease in the NO-induced apoptosis. Inhibition of CPP32-like protease prevented apoptosis in RAW 264.7 parent cells. In addition, SNP dramatically activated CPP32 in the parent or in empty vector-transformed cells, while slightly activated CPP32 in PKC transfectants. Therefore, we conclude that PKC protects NO-induced apoptotic cell death, presumably nullifying the NO-mediated activation of JNK/SAPK, p38 kinase, and CPP32-like protease in RAW 264.7 macrophages.  相似文献   

7.
Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure.  相似文献   

8.
Excess nitric oxide (NO) induces apoptosis of some cell types, including macrophages. As NO is synthesized by NO synthase (NOS) from arginine, a common substrate of arginase, these two enzymes compete for arginine. There are two known isoforms of arginase, types I and II. Using murine macrophage-like RAW 264.7 cells, we asked if the induction of arginase II would downregulate NO production and hence prevent apoptosis. When cells were exposed to lipopolysaccharide (LPS) and interferon-γ (IFN-γ), the inducible form of NOS (iNOS) was induced, production of NO was elevated, and apoptosis followed. When dexamethasone and cAMP were further added, both iNOS and arginase II were induced, NO production was much decreased, and apoptosis was prevented. When the cells were transfected with an arginase II expression plasmid and treated with LPS/IFN-γ, some cells were rescued from apoptosis. An arginase I expression plasmid was also effective. On the other hand, transfection with the arginase II plasmid did not prevent apoptosis when a NO donor SNAP or a high concentration (12 mM) of arginine was added. These results indicate that arginase II prevents NO-dependent apoptosis of RAW 264.7 cells by depleting intracellular arginine and by decreasing NO production.  相似文献   

9.
Treatment of the macrophage cell line RAW 264.7 with the short-lived NO donor S-nitrosoglutathione triggers apoptosis through the release of mitochondrial mediators. However, continuous supply of NO by long-lived NO donors protected cells from apoptosis through mechanisms that involved the maintenance or an increase in the levels of the inhibitor of apoptosis proteins (IAPs) cIAP-1, cIAP-2, and xIAP and decreases in the accumulation of p53 and in the levels and targeting of Bax to the mitochondria. As a result of these changes, the activation of caspases 9 and 3 was notably delayed, expanding the time of viability of the macrophages. Moreover, inhibition of NO synthase 2 activity after 8 h of stimulation of RAW 264.7 cells with LPS and IFN-gamma accelerated apoptosis via an increase in the processing and activation of caspases. These data suggest that NO exerts an important role in the autoregulation of apoptosis in macrophages.  相似文献   

10.
The effects of capsular polysaccharides, galactoxylomannan (GalXM) and glucuronoxylomannan (GXM), from acapsular (GXM negative) and encapsulate strains of Cryptococcus neoformans were investigated in RAW 264.7 and peritoneal macrophages. Here, we demonstrate that GalXM and GXM induced different cytokines profiles in RAW 264.7 macrophages. GalXM induced production of TNF-alpha, NO and iNOS expression, while GXM predominantly induced TGF-beta secretion. Both GalXM and GXM induced early morphological changes identified as autophagy and late macrophages apoptosis mediated by Fas/FasL interaction, a previously unidentified mechanism of virulence. GalXM was more potent than GXM at induction of Fas/FasL expression and apoptosis on macrophages in vitro and in vivo. These findings uncover a mechanism by which capsular polysaccharides from C. neoformans might compromise host immune responses.  相似文献   

11.
Callsen D  Brüne B 《Biochemistry》1999,38(8):2279-2286
The inflammatory mediator nitric oxide (NO*) promotes apoptotic cell death based on morphological evidence, accumulation of the tumor suppressor p53, caspase-3 activation, and DNA fragmentation in RAW 264.7 macrophages. Since nitrosothiols may actually be the predominant form of biologically active NO* in vivo, we used S-nitrosoglutathione (GSNO) to study activation of extracellular signal-regulated protein kinases1/2 (ERK1/2), c-Jun N-terminal kinases/stress-activated protein kinases (JNK1/2), and p38 kinases. Moreover, we determined the role of mitogen-activated protein kinase signaling in the apoptotic transducing ability of GSNO. ERK1/2 became activated in response to GSNO after 4 h and remained active for the next 20 h. Blocking the ERK1/2 pathway by the mitogen-activated protein kinase kinase inhibitor PD 98059 enhanced GSNO-elicited apoptosis. p38 was activated as well, but inhibition of p38 with SB 203580 left apoptosis unaltered. Activation of JNK1/2 by GSNO showed maximal kinase activities between 2 and 8 h. Attenuating JNK1/2 by antisense-depletion eliminated the pro-apoptotic action of low GSNO concentrations (250 microM), whereas apoptosis proceeded independently of JNK1/2 at higher doses of the NO donor (500 microM). Decreased apoptosis by JNK1/2 depletion prevented p53 accumulation after the addition of GSNO, which positions JNK1/2 upstream of the p53 response at low agonist concentrations. In line, JNK1/2 activation proceeded unaltered in p53-antisense transfected macrophages. However, with higher GSNO concentrations apoptotic transducing pathways, including p53 accumulation, were JNK1/2 unrelated. The regulation of mitogen-activated protein kinases by GSNO may help to define cell protective and destructive actions of reactive nitrogen species.  相似文献   

12.
NO appears as an important determinant in auto and paracrine macrophage function. We hypothesized that NO switches monocyte/macrophage function from a pro- to an anti-inflammatory phenotype by activating anti-inflammatory properties of the peroxisome proliferator-activated receptor (PPAR)gamma. NO-releasing compounds (100 micro M S-nitrosoglutathione or 50 micro M spermine-NONOate) as well as inducible NO synthase induction provoked activation of PPARgamma. This was proven by EMSAs, with the notion that supershift analysis pointed to the involvement of PPARgamma. PCR analysis ruled out induction of PPARgamma mRNA as a result of NO supplementation. Reporter assays, with a construct containing a triple PPAR response element in front of a thymidine kinase minimal promoter driving the luciferase gene, were positive in response to NO delivery. DNA binding capacity as well as the transactivating capability of PPARgamma were attenuated by addition of the antioxidant N-acetyl-cysteine or in the presence of the NO scavenger 2-phenyl-4,4,5,6-tetramethyl-imidazoline-1-oxyl 3-oxide. Having established that NO but not lipophilic cyclic GMP analogs activated PPARgamma, we verified potential anti-inflammatory consequences. The oxidative burst of macrophages, evoked by phorbol ester, was attenuated in association with NO-elicited PPARgamma activation. A cause-effect relationship was demonstrated when PPAR response element decoy oligonucleotides, supplied in front of NO delivery, allowed to regain an oxidative response. PPARgamma-mediated down-regulation of p47 phagocyte oxidase, a component of the NAD(P)H oxidase system, was identified as one molecular mechanism causing inhibition of superoxide radical formation. We conclude that NO participates in controlling the pro- vs anti-inflammatory phenotype of macrophages by modulating PPARgamma.  相似文献   

13.
The CD53 antigen is a member of the tetraspanin membrane protein family that is expressed in the lymphoid-myeloid lineage. Its biological role remains unknown. Using microarrays, we identified CD53 as one of the principal genes up-regulated by exposure of macrophages to LPS. Northern blot analysis confirmed the induction of CD53 in RAW264.7 macrophages treated with LPS or SNAP (a nitric oxide donor). Cells stably transfected with sense CD53 cDNA had increased levels of intracellular GSH and lower levels of peroxide, and were more resistant to H2O2 and to UVB irradiation. Cells harboring antisense CD53 had the opposite properties. We propose that the induction of CD53 is a major mechanism by which macrophages protect themselves against LPS-induced oxidative stress and UVB irradiation.  相似文献   

14.
15.
An aqueous acetone extract of the pericarps of Mallotus japonicus (MJE) inhibited nitric oxide (NO) production by a murine macrophage-like cell line, RAW 264.7, which was activated by lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Seven phloroglucinol derivatives isolated from MJE exhibited inhibitory activity against NO production. Among these phloroglucinol derivatives, isomallotochromanol exhibited strong inhibitory activity toward NO production, exhibiting an IC(50) of 10.7 microM. MJE and the phloroglucinol derivatives significantly reduced both the induction of inducible nitric oxide synthase (iNOS) protein and iNOS mRNA expression. NO production by macrophages preactivated with LPS and IFN-gamma for 16 h was also inhibited by MJE and the phloroglucinol derivatives. Furthermore, MJE and the derivatives directly affected the conversion of L-[(14)C]arginine to L-[(14)C]citrulline by the cell extract. These results suggest that MJE and the phloroglucinol derivatives have the pharmacological ability to suppress NO production by activated macrophages. They inhibited NO production by two mechanisms: reduction of iNOS protein induction and inhibition of enzyme activity.  相似文献   

16.
In macrophages, L-arginine can be used by NO synthase and arginase to form NO and urea, respectively. Therefore, activation of arginase may be an effective mechanism for regulating NO production in macrophages through substrate competition. Here, we examined whether IL-13 up-regulates arginase and thus reduces NO production from LPS-activated macrophages. The signaling molecules involved in IL-13-induced arginase activation were also determined. Results showed that IL-13 increased arginase activity through de novo synthesis of the arginase I mRNA and protein. The activation of arginase was preceded by a transient increase in intracellular cAMP, tyrosine kinase phosphorylation, and p38 mitogen-activated protein kinase (MAPK) activation. Exogenous cAMP also increased arginase activity and enhanced the effect of IL-13 on arginase induction. The induction of arginase was abolished by a protein kinase A (PKA) inhibitor, KT5720, and was down-regulated by tyrosine kinase inhibitors and a p38 MAPK inhibitor, SB203580. However, inhibition of p38 MAPK had no effect on either the IL-13-increased intracellular cAMP or the exogenous cAMP-induced arginase activation, suggesting that p38 MAPK signaling is parallel to the cAMP/PKA pathway. Furthermore, the induction of arginase was insensitive to the protein kinase C and p44/p42 MAPK kinase inhibitors. Finally, IL-13 significantly inhibited NO production from LPS-activated macrophages, and this effect was reversed by an arginase inhibitor, L-norvaline. Together, these data demonstrate for the first time that IL-13 down-regulates NO production through arginase induction via cAMP/PKA, tyrosine kinase, and p38 MAPK signalings and underline the importance of arginase in the immunosuppressive activity of IL-13 in activated macrophages.  相似文献   

17.
18.
Antioxidant action of Rosmarinic acid (Ros A), a natural phenolic ingredient in many Lamiaceae herbs such as Perilla frutescens, sage, basil and mint, was analyzed in relation to the Ikappa-B activation in RAW264.7 macrophages. Ros A inhibited nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) protein synthesis induced by lipopolysaccharide (LPS), and also effectively suppressed phorbol 12-myristate 13-acetate (PMA)-induced superoxide production in RAW264.7 macrophages in a dose-dependent manner. Peroxynitrite-induced formation of 3-nitrotyrosine in bovine serum albumin and RAW264.7 macrophages were also inhibited by Ros A. Moreover, Western blot analysis demonstrated that LPS-induced phosphorylation of Ikappa-Balpha was abolished by Ros A. Ros A can act as an effective protector against peroxynitrite-mediated damage, and as a potent inhibitor of superoxide and NO synthesis; the inhibition of the formation of reactive oxygen and nitrogen species are partly based on its ability to inhibit the serine phosphorylation of Ikappa-Balpha.  相似文献   

19.
While it has been suggested that IL‐33 plays pathogenic roles in various disorders, the factors that stimulate IL‐33 production are poorly characterized. In the present study, the effect of cyclic adenosine monophosphate (cAMP) signaling on IL‐33 production in RAW264.7 macrophages in response to various doses of LPS was examined. High‐dose LPS treatment induced IL‐33 and TNF protein production in RAW264.7 macrophages. In contrast, low‐dose LPS failed to induce IL‐33 production while significantly inducing TNF production. In the presence of the membrane‐permeable cAMP analog 8‐Br‐cAMP, low‐dose LPS induced vigorous IL‐33 production. This phenomenon was consistent with amounts of mRNA. Similarly, the cAMP‐increasing agent adrenaline also enhanced the sensitivity of RAW264.7 macrophages to LPS as demonstrated by IL‐33 production. The protein kinase A (PKA) inhibitor H89 blocked the effects of 8‐Br‐cAMP and adrenaline on IL‐33 production, suggesting that PKA is involved in IL‐33 induction. Taken together, cAMP‐mediated signaling pathway appears to enhance the sensitivity of RAW264.7 macrophages to LPS with respect to IL‐33 production. Our findings suggest that stress events and the subsequent secretion of adrenaline enhance macrophage production via IL‐33; this process may be associated with the pathogenesis of various disorders involving IL‐33.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号