首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cerevisiae PRP17-null mutants are temperature-sensitive for growth. In vitro splicing with extracts lacking Prp17 are kinetically slow for the first step of splicing and are arrested for the second step at temperatures greater than 34 degrees C. In the present study we show that these stalled spliceosomes are compromised for an essential conformational switch that is triggered by Prp16 helicase. These results suggest a plausible mechanistic basis for the second-step arrest in prp17Delta extracts and support a role for Prp17 in conjunction with Prp16. To understand the association of Prp17 with spliceosomes we used a functional epitope-tagged protein in co-immunoprecipitation experiments. Examination of co-precipitated snRNAs (small nuclear RNAs) show that Prp17 interacts with U2, U5 and U6 snRNPs (small nuclear ribonucleoproteins) but it is not a core component of any one snRNP. Prp17 association with in-vitro-assembled spliceosome complexes on actin pre-mRNAs was also investigated. Although the U5 snRNP proteins Prp8 and Snu114 are found in early pre-spliceosomes that contain all five snRNPs, Prp17 is not detectable at this step; however, Prp17 is present in the subsequent pre-catalytic A1 complex, containing unspliced pre-mRNA, formed after the dissociation of U4 snRNP. Thus Prp17 joins the spliceosome prior to both catalytic reactions. Our results indicate continued interactions in catalytic spliceosomes that contain reaction intermediates and in post-splicing complexes containing the lariat intron. These Prp17-spliceosome association analyses provide a biochemical basis for the delayed first step in prp17Delta and explain the previously known multiple genetic interactions between Prp17, factors of the Prp19-complex [NTC (nineteen complex)], functional elements in U2 and U5 snRNAs and other second-step splicing factors.  相似文献   

2.
Mcm10 is a conserved eukaryotic DNA replication factor that is required for S phase progression. Recently, Mcm10 has been shown to interact physically with the DNA polymerase-alpha (pol-alpha).primase complex. We show now that Mcm10 is in a complex with pol-alpha throughout the cell cycle. In temperature-sensitive mcm10-1 mutants, depletion of Mcm10 results in degradation of the catalytic subunit of pol-alpha, Cdc17/Pol1, regardless of whether cells are in G(1), S, or G(2) phase. Importantly, Cdc17 protein levels can be restored upon overexpression of exogenous Mcm10 in mcm10-1 mutants that are grown at the nonpermissive temperature. Moreover, overexpressed Cdc17 that is normally subject to rapid degradation is stabilized by Mcm10 co-overexpression but not by co-overexpression of the B-subunit of pol-alpha, Pol12. These results are consistent with Mcm10 having a role as a nuclear chaperone for Cdc17. Mutational analysis indicates that a conserved heat-shock protein 10 (Hsp10)-like domain in Mcm10 is required to prevent the degradation of Cdc17. Substitution of a single residue in the Hsp10-like domain of endogenous Mcm10 results in a dramatic reduction of steady-state Cdc17 levels. The high degree of evolutionary conservation of this domain implies that stabilizing Cdc17 may be a conserved function of Mcm10.  相似文献   

3.
Rong Z  Cheng L  Ren Y  Li Z  Li Y  Li X  Li H  Fu XY  Chang Z 《Cellular signalling》2007,19(7):1514-1520
Interleukin-17F (IL-17F), together with interleukin-17A (IL-17 or IL-17A), is a marker of T(H)17 cells, a new lineage of effector CD4(+) T cells to contribute to pathogenesis of a growing list of autoimmune and inflammatory diseases, such as experimental autoimmune encephalitis (EAE) and collagen-induced arthritis (CIA). IL-17F, similar to IL-17A, was reported to employ interleukin-17 receptor (IL-17R or IL-17RA) for signaling but the downstream cascades remain largely elusive. Here we report that TRAF6 interacts with IL-17R and mediates ubiquitination of the receptor. We observed that IL-17F and IL-17A could induce IL-17R ubiquitination and DN-TRAF6, a dominant-negative mutant, could block IL-17F- but not IL-17A-triggered ubiquitination of IL-17R. Moreover, we showed that the ubiquitination of IL-17R was positively correlated with the downstream signaling, as evaluated by a luciferase reporter driven by a putative native promoter of 24p3, an IL-17 targeted gene. Our results indicate that ubiquitination of IL-17R mediated by TRAF6 plays a critical role in IL-17F signaling. This study, for the first time, reveals a possible molecular mechanism that the initiation of the IL-17F/IL-17R signaling pathway requires the receptor ubiquitination by TRAF6.  相似文献   

4.
Interleukin-17 (IL-17)-producing CD4(+) T cells (Th17 cells) have been proven to play a critical role in the pathogenesis of systemic lupus erythematosus (SLE). To shed light on the mechanism of immunoregulation of adipose-derived stem cells (ADSCs), we investigated the effects of allogeneic ADSCs on the Th17 lymphocytes of patients with active SLE by co-culturing ADSCs and peripheral blood mononuclear cells of these patients in vitro. The results indicated that ADSCs from passage 3 (P3) down-regulated the proportion of Th17 cells and their abilities to produce IL-17, whereas ADSCs from passage 8 (P8) had contrasting effect. The results also showed cell-cell contact played a role in P3 down-regulation. Blocking the functional pathway of IL-23 (both its ligand and its receptor) also contributed to this suppression. These results suggested that immunomodulation of ADSCs may be achieved by partially suppressing the number and capability of Th17 lymphocytes, indicating that ADSCs could be employed as therapeutic tools for the autoimmune diseases.  相似文献   

5.
Both CYP17 and UGT2B17 are suggested to be potential risk factors of prostate cancer (PCa). To date, many studies have evaluated the relationship between CYP17 T-34C and UGT2B17 Del polymorphisms and Prostate cancer with conflicting results. Here, we performed comprehensive meta-analyses of over 25 studies, including results from about 17,000 subjects on the association of CYP17 T-34C and UGT2B17 Del polymorphisms with Prostate cancer. Overall, no significant associations between CYP17 T-34C polymorphism and Prostate cancer risk were found for T versus C (P=0.63), TT versus CC (P=0.52), TT+TC versus CC (P=0.40) or TT versus TC+CC (P=0.98), though there was a marginally significant association with the UGT2B17 Del polymorphism under Del/Del versus Ins/Ins +Ins/Del (P=0.05). In an analysis of various subgroups, there were no substantially significant associations with the CYP17 T-34C polymorphism; while there was a significant association for the UGT2B17 Del/Del genotype in a subgroup of men-based controls (P < 0.0001). The current meta-analysis results suggest that the CYP17 T-34C polymorphism may not be associated with Prostate cancer, while the UGT2B17 Del polymorphism may significantly contribute to prostate cancer susceptibility in men. These findings also support the idea that CYP17 has no significant effects on androgen levels, while UGT2B17 does.  相似文献   

6.
The human papillomavirus (HPV) L2 capsid protein plays an essential role during the early stages of viral infection, but the molecular mechanisms underlying its mode of action remain obscure. Using a proteomic approach, we have identified the adaptor protein, sorting nexin 17 (SNX17) as a strong interacting partner of HPV L2. This interaction occurs through a highly conserved SNX17 consensus binding motif, which is present in the majority of HPV L2 proteins analysed. Using mutants of L2 defective for SNX17 interaction, or siRNA ablation of SNX17 expression, we demonstrate that the interaction between L2 and SNX17 is essential for viral infection. Furthermore, loss of the L2-SNX17 interaction results in enhanced turnover of the L2 protein and decreased stability of the viral capsids, and concomitantly, there is a dramatic decrease in the efficiency with which viral genomes transit to the nucleus. Indeed, using a range of endosomal and lysosomal markers, we show that capsids defective in their capacity to bind SNX17 transit much more rapidly to the lysosomal compartment. These results demonstrate that the L2-SNX17 interaction is essential for viral infection and facilitates the escape of the L2-DNA complex from the late endosomal/lysosomal compartments.  相似文献   

7.
Charcot-Marie-Tooth disease type 1a (CMT 1a) is an autosomal dominant peripheral neuropathy linked to the DNA markers D17S58 and D17S71, located in the pericentromeric region of the chromosome 17p arm. We analyzed an extended 5-generation Belgian family, multiply affected with CMT 1a, for linkage with eight chromosome 17 markers. The results indicated that the CMT 1a mutation is localized in the chromosomal region 17p11.2-p12 between the marker D17S71 and the gene for myosin heavy polypeptide 2 of adult skeletal muscle.  相似文献   

8.
Nelson Bay orthoreovirus (NBV), a member of the family Reoviridae, genus Orthoreovirus, is a bat-borne virus that causes respiratory diseases in humans. NBV encodes two unique nonstructural proteins, fusion-associated small transmembrane (FAST) protein and p17 protein, in the S1 gene segment. FAST induces cell–cell fusion between infected cells and neighboring cells and the fusogenic activity is required for efficient viral replication. However, the function of p17 in the virus cycle is not fully understood. Here, various p17 mutant viruses including p17-deficient viruses were generated by a reverse genetics system for NBV. The results demonstrated that p17 is not essential for viral replication and does not play an important role in viral pathogenesis. On the other hand, NBV p17 regulated viral replication in a bat cell line but not in other human and animal cell lines. Nuclear localization of p17 is associated with the regulation of NBV replication in bat cells. We also found that p17 dramatically enhances the cell–cell fusion activity of NBV FAST protein for efficient replication in bat cells. Furthermore, we found that a protein homologue of NBV p17 from another bat-borne orthoreovirus, but not those of avian orthoreovirus or baboon orthoreovirus, also supported efficient viral replication in bat cells using a p17-deficient virus-based complementation approach. These results provide critical insights into the functioning of the unique replication machinery of bat-borne viruses in their natural hosts.  相似文献   

9.
The 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) modulate the biological potency of estrogens and androgens by interconversion of inactive 17-keto-steroids and their active 17beta-hydroxy- counterparts. We have shown previously that flavonoids are potentially useful lead compounds for developing inhibitors of 17beta-HSDs. In this paper, we describe the synthesis and biochemical evaluation of structurally analogous inhibitors, the trans-cinnamic acid esters and related compounds. Additionally, quantitative structure-activity relationship (QSAR) and modelling studies were performed to rationalize the results and to suggest further optimization. The results stress the importance of a hydrogen bond with Asn154 and hydrophobic interactions with the aromatic side chain of Tyr212 for optimal molecular recognition.  相似文献   

10.
Saccharomyces cerevisiae Rad17p is necessary for cell cycle checkpoint arrests in response to DNA damage. Its known interactions with the checkpoint proteins Mec3p and Ddc1p in a PCNA-like complex indicate a sensor role in damage recognition. In a novel application of the yeast two-hybrid system and by immunoprecipitation, we show here that Rad17p is capable of increased self-interaction following DNA damage introduced by 4-nitroquinoline-N-oxide, camptothecin or partial inactivation of DNA ligase I. Despite overlap of regions required for Rad17p interactions with Rad17p or Mec3p, single amino acid substitutions revealed that Rad17p x Rad17p complex formation is independent of Mec3p. E128K (rad17-1) was found to inhibit Rad17p interaction with Mec3p but not with Rad17p. On the other hand, Phe-121 is essential for Rad17p self-interaction, and its function in checkpoint arrest but not for Mec3p interaction. These differential effects indicate that Rad17p-Rad17p interaction plays a role that is independent of the Rad17p x Mec3p x Ddc1p complex, although our results are also compatible with Rad17p-mediated supercomplex formation of the Rad17p x Mec3p x Ddc1p heterotrimer in response to DNA damage.  相似文献   

11.
IL-17, which exerts strong pro-inflammatory effects, has emerged as an important mediator in inflammation-associated cancer. However, the characteristics of IL-17-producing cells, the relevance of IL-17 to clinical parameters and its function in the development and progression of colorectal carcinoma still remain to be explored. In the present study, we first found the levels of IL-17 producing cells were significantly increased in the tumor regions of samples from colorectal carcinoma patients compared with non-tumor regions. Confocal microscopic analysis showed co-staining of IL-17 with CD4 and CD68, indicating IL-17 in colorectal carcinoma was expressed by macrophage and Th17. High expression of IL-17 was associated with high microvessel density. Univariate and multivariate analysis revealed that IL-17 was an independent prognostic factor for overall survival. To explore the underlying mechanisms of IL-17 in angiogenesis, we used PCR-array to find pro-angiogenic factor in cancer cells specifically induced by IL-17, then validated VEGF as one of factors in IL-17-mediated angiogenesis with the use of quantitative RT-PCR, ELISA and VEGF immunohistochemistry. Our results propose IL-17 as a novel indicator of prognosis in the patients with colorectal carcinoma and could serve as a novel therapeutic target for colorectal carcinoma, furthermore our results indicate that IL-17 producing cells may facilitate development of colorectal carcinoma by fostering angiogenesis via promote VEGF production from cancer cells.  相似文献   

12.
The normal developmental pattern of 17 beta-hydroxysteroid dehydrogenase (17HSD) activity in genital skin was examined using radiolabeled androstenedione as a substrate in a microassay based on high-pressure liquid chromatography separation of the metabolites. This assay allowed the simultaneous determination of 17HSD and 5 alpha-reductase (5R) activities in both individual foreskin samples and pools of tissue obtained at circumcision from birth to 8 years of age. The results show that 17HSD activity is very low at birth and increases steadily during the so-called quiescent period. Reciprocal changes were observed for 5R. The increase in 17HSD activity appears to be independent of gonadal stimulation, but the mechanisms involved remain to be elucidated. From a clinical standpoint, our results provide an alternative explanation for the relative lack of virilization observed in newborns with testicular 17HSD deficiency.  相似文献   

13.
We report the preliminary results of the synthesis and biochemical evaluation of a number of 4-hydroxyphenyl ketones as inhibitors of the isozyme of the enzyme 17beta-hydroxysteroid dehydrogenase (17beta-HSD) responsible for the conversion of androstenedione (AD) to testosterone (T), more specifically type 3 (17beta-HSD3). The results of our study suggest that we have synthesised compounds which are, in general, potent inhibitors of 17beta-HSD3, in particular, we discovered that 1-(4-hydroxy-phenyl)-nonan-1-one (8) was the most potent (IC(50) = 2.86 +/- 0.03 microM). We have therefore provided good lead compounds in the synthesis of novel non-steroidal inhibitors of 17beta-HSD3.  相似文献   

14.
A disintegrin and metalloprotease protein 17 (ADAM17) is a transmembrane zinc dependent metalloprotease. The catalytic activity of the enzyme results in the shedding of a broad range of membrane proteins. The release of the corresponding ectodomains induces a switch in various physiological and pathophysiological processes. So far there is not much information about the molecular mechanism of ADAM17 activation available. As for other transmembrane proteases, multimerisation may play a critical role in the activation and function of ADAM17. The present work demonstrates that ADAM17 indeed exists as a multimer in the cell membrane and that this multimerisation is mediated by its EGF-like domain.  相似文献   

15.
IL-17A and IL-17F, produced by the Th17 CD4(+) T cell lineage, have been linked to a variety of inflammatory and autoimmune conditions. We recently reported that activated human CD4(+) T cells produce not only IL-17A and IL-17F homodimers but also an IL-17F/IL-17A heterodimeric cytokine. All three cytokines can induce chemokine secretion from bronchial epithelial cells, albeit with different potencies. In this study, we used small interfering RNA and Abs to IL-17RA and IL-17RC to demonstrate that heterodimeric IL-17F/IL-17A cytokine activity is dependent on the IL-17RA/IL-17RC receptor complex. Interestingly, surface plasmon resonance studies indicate that the three cytokines bind to IL-17RC with comparable affinities, whereas they bind to IL-17RA with different affinities. Thus, we evaluated the effect of the soluble receptors on cytokine activity and we find that soluble receptors exhibit preferential cytokine blockade. IL-17A activity is inhibited by IL-17RA, IL-17F is inhibited by IL-17RC, and a combination of soluble IL-17RA/IL-17RC receptors is required for inhibition of the IL-17F/IL-17A activity. Altogether, these results indicate that human IL-17F/IL-17A cytokine can bind and signal through the same receptor complex as human IL-17F and IL-17A. However, the distinct affinities of the receptor components for IL-17A, IL-17F, and IL-17F/IL-17A heterodimer can be exploited to differentially affect the activity of these cytokines.  相似文献   

16.
A novel 17beta-hydroxysteroid dehydrogenase (17beta-HSD) chronologically named type 12 17beta-HSD (17beta-HSD12), that transforms estrone (E1) into estradiol (E2) was identified by sequence similarity with type 3 17beta-HSD (17beta-HSD3) that catalyzes the formation of testosterone from androstenedione in the testis. Both are encoded by large genes spanning 11 exons, most of them showing identical size. Using human embryonic kidney-293 cells stably expressing 17beta-HSD12, we have found that the enzyme catalyzes selectively and efficiently the transformation of E1 into E2, thus identifying its role in estrogen formation, in contrast with 17beta-HSD3, the enzyme involved in the biosynthesis of the androgen testosterone in the testis. Using real-time PCR to quantify mRNA in a series of human tissues, the expression levels of 17beta-HSD12 as well as two other enzymes that perform the same transformation of E1 into E2, namely type 1 17beta-HSD and type 7 17beta-HSD, it was found that 17beta-HSD12 mRNA is the most highly expressed in the ovary and mammary gland. To obtain a better understanding of the structural basis of the difference in substrate specificity between 17beta-HSD3 and 17beta-HSD12, we have performed tridimensional structure modelization using the coordinates of type 1 17beta-HSD and site-directed mutagenesis. The results show the potential role of bulky amino acid F234 in 17beta-HSD12 that blocks the entrance of androstenedione. Overall, our results strongly suggest that 17beta-HSD12 is the major estrogenic 17beta-HSD responsible for the conversion of E1 to E2 in women, especially in the ovary, the predominant source of estrogens before menopause.  相似文献   

17.
HIV-1 utilizes CD4 and the chemokine coreceptor for viral entry. The coreceptor CCR5 binding site on gp120 partially overlaps with the binding epitope of 17b, a neutralizing antibody of HIV-1. We designed a multicomponent biosensor assay to investigate the kinetic mechanism of interaction between gp120 and its receptors and the cooperative effect of the CCR5 binding site on the CD4 binding site, using 17b as a surrogate of CCR5. The Env gp120 proteins from four viral strains (JRFL, YU2, 89.6, and HXB2) and their corresponding C1-, V1/V2-, C5-deleted mutants (DeltaJRFL, DeltaYU2, Delta89.6, and DeltaHXB2) were tested in this study. We found that, across the primary and lab-adapted virus strains, 17b reduced the affinity of all four full-length Env gp120s for sCD4 by decreasing the on-rate and increasing the off-rate. This effect of 17b on full-length gp120 binding to sCD4 contrasts with the enhancing effect of sCD4 on gp120-17b interaction. For the corresponding loop-deleted mutants of Env gp120, the off-rates of the gp120-sCD4 interaction were greatly reduced in the presence of 17b, resulting in higher affinities (except for that of DeltaHXB2). The results suggest that, when 17b is prebound to full-length gp120, the V1/V2 loops may be relocated to a position that partially blocks the CD4-binding site, leading to weakening of the CD4 interaction. Given the fact that the 17b binding epitope partially overlaps with the binding site of CCR5, the kinetic results suggest that coreceptor CCR5 binding could have a similar "release" effect on the gp120-CD4 interaction by increasing the off-rate of the latter. The results also suggest that the neutralizing effect of 17b may arise not only from partially blocking the CCR5 binding site but also from reducing the CD4 binding affinity of gp120. This negative cooperative effect of 17b may provide insight into approaches to designing antagonists for viral entry.  相似文献   

18.
Retinoic acid-related orphan receptor (ROR)γt(+) TCRαβ(+) cells expressing IL-17, termed Th17 cells, are most abundant in the intestinal lamina propria. Symbiotic microbiota are required for the generation of Th17 cells, but the requirement for microbiota-derived Ag is not documented. In this study, we show that normal numbers of Th17 cells develop in the intestine of mice that express a single TCR in the absence of cognate Ag, whereas the microbiota remains essential for their development. However, such mice, or mice monocolonized with the Th17-inducing segmented filamentous bacteria, fail to induce normal numbers of Foxp3(+) RORγt(+) T cells, the regulatory counterpart of IL-17(+)RORγt(+) T cells. These results demonstrate that a complex microbiota and cognate Ag are required to generate a properly regulated set of RORγt(+) T cells and Th17 cells.  相似文献   

19.
Tsao CC  Geisen C  Abraham RT 《The EMBO journal》2004,23(23):4660-4669
Human Rad17 (hRad17) is centrally involved in the activation of cell-cycle checkpoints by genotoxic agents or replication stress. Here we identify hMCM7, a core component of the DNA replication apparatus, as a novel hRad17-interacting protein. In HeLa cells, depletion of either hRad17 or hMCM7 with small-interfering RNA suppressed ultraviolet (UV) light- or aphidicolin-induced hChk1 phosphorylation, and abolished UV-induced S-phase checkpoint activation. Similar results were obtained after transfection of these cells with a fusion protein containing the hMCM7-binding region of hRad17. The hMCM7-depleted cells were also defective for the formation of ATR-containing nuclear foci after UV irradiation, suggesting that hMCM7 is required for stable recruitment of ATR to damaged DNA. These results demonstrate that hMCM7 plays a direct role in the transmission of DNA damage signals from active replication forks to the S-phase checkpoint machinery in human cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号