首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt and heat stresses, which are often combined in nature, induce complementing defense mechanisms. Organisms adapt to high external salinity by accumulating small organic compounds known as osmolytes, which equilibrate cellular osmotic pressure. Osmolytes can also act as "chemical chaperones" by increasing the stability of native proteins and assisting refolding of unfolded polypeptides. Adaptation to heat stress depends on the expression of heat-shock proteins, many of which are molecular chaperones, that prevent protein aggregation, disassemble protein aggregates, and assist protein refolding. We show here that Escherichia coli cells preadapted to high salinity contain increased levels of glycine betaine that prevent protein aggregation under thermal stress. After heat shock, the aggregated proteins, which escaped protection, were disaggregated in salt-adapted cells as efficiently as in low salt. Here we address the effects of four common osmolytes on chaperone activity in vitro. Systematic dose responses of glycine betaine, glycerol, proline, and trehalose revealed a regulatory effect on the folding activities of individual and combinations of chaperones GroEL, DnaK, and ClpB. With the exception of trehalose, low physiological concentrations of proline, glycerol, and especially glycine betaine activated the molecular chaperones, likely by assisting local folding in chaperone-bound polypeptides and stabilizing the native end product of the reaction. High osmolyte concentrations, especially trehalose, strongly inhibited DnaK-dependent chaperone networks, such as DnaK+GroEL and DnaK+ClpB, likely because high viscosity affects dynamic interactions between chaperones and folding substrates and stabilizes protein aggregates. Thus, during combined salt and heat stresses, cells can specifically control protein stability and chaperone-mediated disaggregation and refolding by modulating the intracellular levels of different osmolytes.  相似文献   

2.
Although GroE chaperonins and osmolytes had been used separately as protein folding aids, combining these two methods provides a considerable advantage for folding proteins that cannot fold with either osmolytes or chaperonins alone. This technique rapidly identifies superior folding solution conditions for a broad array of proteins that are difficult or impossible to fold by other methods. While testing the broad applicability of this technique, we have discovered that osmolytes greatly simplify the chaperonin reaction by eliminating the requirement for the co-chaperonin GroES which is normally involved in encapsulating folding proteins within the GroEL–GroES cavity. Therefore, combinations of soluble or immobilized GroEL, osmolytes and ATP or even ADP are sufficient to refold the test proteins. The first step in the chaperonin/osmolyte process is to form a stable long-lived chaperonin–substrate protein complex in the absence of nucleotide. In the second step, different osmolyte solutions are added along with nucleotides, thus forming a ‘folding array’ to identify superior folding conditions. The stable chaperonin–substrate protein complex can be concentrated or immobilized prior to osmolyte addition. This procedure prevents-off pathway aggregation during folding/refolding reactions and more importantly allows one to refold proteins at concentrations (~mg/ml) that are substantially higher than the critical aggregation concentration for given protein. This technique can be used for successful refolding of proteins from purified inclusion bodies. Recently, other investigators have used our chaperonin/osmolyte method to demonstrate that a mutant protein that misfolds in human disease can be rescued by GroEL/osmolyte system. Soluble or immobilized GroEL can be easily removed from the released folded protein using simple separation techniques. The method allows for isolation of folded monomeric or oligomeric proteins in quantities sufficient for X-ray crystallography or NMR structural determinations.  相似文献   

3.
Osmolytes stabilize proteins to thermal and chemical denaturation. We have studied the effects of the osmolytes sarcosine, betaine, trimethylamine-N-oxide, and taurine on the structure and stability of the protein.peptide complex RNase S using x-ray crystallography and titration calorimetry, respectively. The largest degree of stabilization is achieved with 6 m sarcosine, which increases the denaturation temperatures of RNase S and S pro by 24.6 and 17.4 degrees C, respectively, at pH 5 and protects both proteins against tryptic cleavage. Four crystal structures of RNase S in the presence of different osmolytes do not offer any evidence for osmolyte binding to the folded state of the protein or any perturbation in the water structure surrounding the protein. The degree of stabilization in 6 m sarcosine increases with temperature, ranging from -0.52 kcal mol(-1) at 20 degrees C to -5.4 kcal mol(-1) at 60 degrees C. The data support the thesis that osmolytes that stabilize proteins, do so by perturbing unfolded states, which change conformation to a compact, folding competent state in the presence of osmolyte. The increased stabilization thus results from a decrease in conformational entropy of the unfolded state.  相似文献   

4.
Osmolytes are small, chemically diverse, organic solutes that function as an essential component of cellular stress response. Protecting osmolytes enhance protein stability via preferential exclusion, and nonprotecting osmolytes, such as urea, destabilize protein structures. Although much is known about osmolyte effects on proteins, less is understood about osmolyte effects on nucleic acids and their counterion atmospheres. Nonprotecting osmolytes destabilize nucleic acid structures, but effects of protecting osmolytes depend on numerous factors including the type of nucleic acid and the complexity of the functional fold. To begin quantifying protecting osmolyte effects on nucleic acid interactions, we used small-angle X-ray scattering (SAXS) techniques to monitor DNA duplexes in the presence of sucrose. This protecting osmolyte is a commonly used contrast matching agent in SAXS studies of protein-nucleic acid complexes; thus, it is important to characterize interaction changes induced by sucrose. Measurements of interactions between duplexes showed no dependence on the presence of up to 30% sucrose, except under high Mg(2+) conditions where stacking interactions were disfavored. The number of excess ions associated with DNA duplexes, reported by anomalous small-angle X-ray scattering (ASAXS) experiments, was sucrose independent. Although protecting osmolytes can destabilize secondary structures, our results suggest that ion atmospheres of individual duplexes remain unperturbed by sucrose.  相似文献   

5.
Osmolytes that are naturally selected to protect organisms against environmental stresses are known to confer stability to proteins via preferential exclusion from protein surfaces. Solvophobicity, surface tension, excluded volume, water structure changes and electrostatic repulsion are all examples of forces proposed to account for preferential exclusion and the ramifications exclusion has on protein properties. What has been lacking is a systematic way of determining which force(s) is(are) responsible for osmolyte effects. Here, we propose the use of two experimental metrics for assessing the abilities of various proposed forces to account for osmolyte-mediated effects on protein properties. Metric 1 requires prediction of the experimentally determined ability of the osmolyte to bring about folding/unfolding resulting from the application of the force in question (i.e. prediction of the m-value of the protein in osmolyte). Metric 2 requires prediction of the experimentally determined ability of the osmolyte to contract or expand the Stokes radius of the denatured state resulting from the application of the force. These metrics are applied to test separate claims that solvophobicity/solvophilicity and surface tension are driving forces for osmolyte-induced effects on protein stability. The results show clearly that solvophobic/solvophilic forces readily account for protein stability and denatured state dimensional effects, while surface tension alone fails to do so. The agreement between experimental and predicted m-values involves both positive and negative m-values for three different proteins, and as many as six different osmolytes, illustrating that the tests are robust and discriminating. The ability of the two metrics to distinguish which forces account for the effects of osmolytes on protein properties and which do not, provides a powerful means of investigating the origins of osmolyte-protein effects.  相似文献   

6.
Osmolytes are low molecular weight organic molecules accumulated by organisms to assist proper protein folding, and to provide protection to the structural integrity of proteins under denaturing stress conditions. It is known that osmolyte-induced protein folding is brought by unfavorable interaction of osmolytes with the denatured/unfolded states. The interaction of osmolyte with the native state does not significantly contribute to the osmolyte-induced protein folding. We have therefore investigated if different denatured states of a protein (generated by different denaturing agents) interact differently with the osmolytes to induce protein folding. We observed that osmolyte-assisted refolding of protein obtained from heat-induced denatured state produces native molecules with higher enzyme activity than those initiated from GdmCl- or urea-induced denatured state indicating that the structural property of the initial denatured state during refolding by osmolytes determines the catalytic efficiency of the folded protein molecule. These conclusions have been reached from the systematic measurements of enzymatic kinetic parameters (K m and k cat), thermodynamic stability (T m and ΔH m) and secondary and tertiary structures of the folded native proteins obtained from refolding of various denatured states (due to heat-, urea- and GdmCl-induced denaturation) of RNase-A in the presence of various osmolytes.  相似文献   

7.
Khan SH  Ahmad N  Ahmad F  Kumar R 《IUBMB life》2010,62(12):891-895
Osmolytes are naturally occurring organic compounds, which represent different chemical classes including amino acids, methylamines, and polyols. By accumulating high concentrations of osmolytes, organisms adapt to perturbations that can cause structural changes in their cellular proteins. Osmolytes shift equilibrium toward natively-folded conformations by raising the free energy of the unfolded state. As osmolytes predominantly affect the protein backbone, the balance between osmolyte-backbone interactions and amino acid side chain-solvent interactions determines protein folding. Abnormal cell volume regulation significantly contributes to the pathophysiology of several disorders, and cells respond to these changes by importing, exporting, or synthesizing osmolytes to maintain volume homeostasis. In recent years, it has become quite evident that cells regulate many biological processes such as protein folding, protein disaggregation, and protein-protein interactions via accumulation of specific osmolytes. Many genetic diseases are attributed to the problems associated with protein misfolding/aggregation, and it has been shown that certain osmolytes can protect these proteins from misfolding. Thus, osmolytes can be utilized as therapeutic targets for such diseases. In this review article, we discuss the role of naturally occurring osmolytes in protein stability, underlying mechanisms, and their potential use as therapeutic molecules.  相似文献   

8.
Protein and DNA destabilization by osmolytes: the other side of the coin   总被引:1,自引:0,他引:1  
Singh LR  Poddar NK  Dar TA  Kumar R  Ahmad F 《Life sciences》2011,88(3-4):117-125
Osmolytes are naturally occurring small molecules accumulated intracellularly to protect organisms from various denaturing stresses. Similar to the two faces of a coin, several of these osmolytes are stabilizing and destabilizing proteins depending on the concentrations and/or solvent conditions. For example, the well known stabilizing osmolyte, trehalose destabilizes some proteins at high concentration and/or high pH. In spite of the fact that destabilizing aspects of osmolytes can modulate many cellular processes including regulation of protein homeostasis (proteostasis), protein-protein interaction, and protein-DNA interaction, researchers have mostly focused on the stabilizing aspects of osmolytes. Thus, it is important to look into both aspects of osmolytes to determine their precise role under physiological conditions. In this article, we have discussed both stabilizing and destabilizing/denaturant aspects of osmolytes to uncover both sides of the coin.  相似文献   

9.
Osmolytes form a class of naturally occurring small compounds known to protect proteins in their native folded and functional states. Among the osmolytes, trimethylamine-N-oxide (TMAO) has received special interest lately because it has shown an extraordinary capability to support folding of denatured to native-like species, which show significant functional activity. Most enzymes and/or proteins are commonly stored in glycerol to maintain their activity/function. In the present study, we tested whether TMAO can be a better solute than glycerol for two commonly used proteases, trypsin and chymotrypsin. Our enzyme kinetic data suggest that the enzyme activity of trypsin is significantly enhanced in TMAO compared to glycerol, whereas chymotrypsin activity is not significantly changed in either case. These results are in accordance with the osmolyte effects on the folding of these enzymes, as judged by data from fluorescence emission spectroscopy. These results suggest that TMAO may be a better solute than glycerol to maintain optimal tryptic enzyme activity.  相似文献   

10.
Osmolytes are small molecules that play a central role in cellular homeostasis and the stress response by maintaining protein thermodynamic stability at controlled levels. The underlying physical chemistry that describes how different osmolytes impact folding free energy is well understood, however little is known about their influence on other crucial aspects of protein behavior, such as native‐state conformational changes. Here we investigate this issue with the Hsp90 molecular chaperone, a large dimeric protein that populates a complex conformational equilibrium. Using small angle X‐ray scattering we observe dramatic osmolyte‐dependent structural changes within the native ensemble. The degree to which different osmolytes affect the Hsp90 conformation strongly correlates with thermodynamic metrics of their influence on stability. This observation suggests that the well‐established osmolyte principles that govern stability also apply to large‐scale conformational changes, a proposition that is corroborated by structure‐based fitting of the scattering data, surface area comparisons and m‐value analysis. This approach shows how osmolytes affect a highly cooperative open/closed structural transition between two conformations that differ by a domain‐domain interaction. Hsp90 adopts an additional ligand‐specific conformation in the presence of ATP and we find that osmolytes do not significantly affect this conformational change. Together, these results extend the scope of osmolytes by suggesting that they can maintain protein conformational heterogeneity at controlled levels using similar underlying principles that allow them to maintain protein stability; however the relative impact of osmolytes on different structural states can vary significantly.  相似文献   

11.
Most theories predict that macromolecular crowding stabilizes globular proteins, but recent studies show that weak attractive interactions can result in crowding-induced destabilization. Osmolytes are ubiquitous in biology and help protect cells against stress. Given that dehydration stress adds to the crowded nature of the cytoplasm, we speculated that cells might use osmolytes to overcome the destabilization caused by the increased weak interactions that accompany desiccation. We used NMR-detected amide proton exchange experiments to measure the stability of the test protein chymotrypsin inhibitor 2 under physiologically relevant crowded conditions in the presence and absence of the osmolyte glycine betaine. The osmolyte overcame the destabilizing effect of the cytosol. This result provides a physiologically relevant explanation for the accumulation of osmolytes by dehydration-stressed cells.  相似文献   

12.
Intracellular organic osmolytes are present in certain organisms adapted to harsh environments and these osmolytes protect intracellular macromolecules against the denaturing environmental stress. In natural selection of organic osmolytes as protein stabilizers, it appears that the osmolyte property selected for is the unfavorable interaction between the osmolyte and the peptide backbone, a solvophobic thermodynamic force that we call the osmophobic effect. Because the peptide backbone is highly exposed to osmolyte in the denatured state, the osmophobic effect preferentially raises the free energy of the denatured state, shifting the equilibrium in favor of the native state. By focusing the solvophobic force on the denatured state, the native state is left free to function relatively unfettered by the presence of osmolyte. The osmophobic effect is a newly uncovered thermodynamic force in nature that complements the well-recognized hydrophobic interactions, hydrogen bonding, electrostatic and dispersion forces that drive protein folding. In organisms whose survival depends on the intracellular presence of osmolytes that can counteract denaturing stresses, the osmophobic effect is as fundamental to protein folding as these well-recognized forces.  相似文献   

13.
Protein solvation is the key determinant for isothermal, concentration-dependent effects on protein equilibria, such as folding. The required solvation information can be extracted from experimental thermodynamic data using Kirkwood-Buff theory. Here we derive and discuss general properties of proteins and osmolytes that are pertinent to their biochemical behavior. We find that hydration depends very little on osmolyte concentration and type. Strong dependencies on both osmolyte concentration and type are found for osmolyte self-solvation and protein-osmolyte solvation changes upon unfolding. However, solvation in osmolyte solutions does not involve complex concentration dependencies as found in organic molecules that are not used as osmolytes in nature. It is argued that the simple solvation behavior of naturally occurring osmolytes is a prerequisite for their usefulness in osmotic regulation in vivo.  相似文献   

14.
In several studies, viscogenic osmolytes have been suggested to decrease the folding rate constant of polypeptides by slowing their motion through the solvent. Here, we show that osmolytes may slow protein folding by prematurely collapsing the coil. At low or moderate concentrations of osmolytes (<30%), folding of the two-state protein CI2 becomes faster with increasing osmolyte concentrations, suggesting that the kinetics are governed by protein stability. However, at higher concentrations of osmolyte, the coil collapses in the dead-time of the refolding experiment, causing a dramatic drop in the folding rate. The collapsed state is non-native and appears to be different for different osmolytes.  相似文献   

15.
Osmolytes stabilize proteins against denaturation, but little is known about how their stabilizing effect might affect a protein folding pathway. Here, we report the effects of the osmolytes, trimethylamine-N-oxide, and sarcosine on the stability of the native state of barstar as well as on the structural heterogeneity of an early intermediate ensemble, IE, on its folding pathway. Both osmolytes increase the stability of the native protein to a similar extent, with stability increasing linearly with osmolyte concentration. Both osmolytes also increase the stability of IE but to different extents. Such stabilization leads to an acceleration in the folding rate. Both osmolytes also alter the structure of IE but do so differentially; the fluorescence and circular dichroism properties of IE differ in the presence of the different osmolytes. Because these properties also differ from those of the unfolded form in refolding conditions, different burst phase changes in the optical signals are seen for folding in the presence of the different osmolytes. An analysis of the urea dependence of the burst phase changes in fluorescence and circular dichroism demonstrates that the formation of IE is itself a multistep process during folding and that the two osmolytes act by stabilizing, differentially, different structural components present in the IE ensemble. Thus, osmolytes can alter the basic nature of a protein folding pathway by discriminating, through differential stabilization, between different members of an early intermediate ensemble, and in doing so, they thereby appear to channel folding along one route when many routes are available.  相似文献   

16.
An all-atom Gō model of Trp-cage protein is simulated using discontinuous molecular dynamics in an explicit minimal solvent, using a single, contact-based interaction energy between protein and solvent particles. An effective denaturant or osmolyte solution can be constructed by making the interaction energy attractive or repulsive. A statistical mechanical equivalence is demonstrated between this effective solvent model and models in which proteins are immersed in solutions consisting of water and osmolytes or denaturants. Analysis of these studies yields the following conclusions: 1), Osmolytes impart extra stability to the protein by reducing the entropy of the unfolded state. 2), Unfolded states in the presence of osmolyte are more collapsed than in water. 3), The folding transition in osmolyte solutions tends to be less cooperative than in water, as determined by the ratio of van 't Hoff to calorimetric enthalpy changes. The decrease in cooperativity arises from an increase in native structure in the unfolded state, and thus a lower thermodynamic barrier at the transition midpoint. 4), Weak denaturants were observed to destabilize small proteins not by lowering the unfolded enthalpy, but primarily by swelling the unfolded state and raising its entropy. However, adding a strong denaturant destabilizes proteins enthalpically. 5), The folding transition in denaturant-containing solutions is more cooperative than in water. 6), Transfer to a concentrated osmolyte solution with purely hard-sphere steric repulsion significantly stabilizes the protein, due to excluded volume interactions not present in the canonical Tanford transfer model. 7), Although a solution with hard-sphere interactions adds a solvation barrier to native contacts, the folding is nevertheless less cooperative for reasons 1–3 above, because a hard-sphere solvent acts as a protecting osmolyte.  相似文献   

17.
Wu P  Bolen DW 《Proteins》2006,63(2):290-296
Upon addition of protecting osmolyte to an aqueous solution of an intrinsically unstructured protein, spectral observables are often seen to change in a sigmoid fashion as a function of increasing osmolyte concentration. Commonly, such data are analyzed using the linear extrapolation model (LEM), a method that defines a scale from 0%-100% folded species at each osmolyte concentration by means of extending pre- and post-folding baselines into the transition region. Defining the 0%-100% folding scale correctly for each osmolyte is an important part of the analysis, leading to evaluation of the fraction of folded protein existing in the absence of osmolytes. In this study, we used reduced and carboxyamidated RNase T1 (RCAM-T1) as an intrinsically unstructured protein, and determined the thermodynamic stability of RCAM-T1 induced by naturally occurring osmolytes. Because the folded fraction of the protein population determined by experiments of thermal and urea-induced denaturation is nonzero in the absence of osmolytes at 15 degrees C, the commonly used LEM can lead to false values of DeltaG[stackD-->N0] for protein folding due to the arbitrary assumption that the protein is 100% unfolded in the presence of buffer alone. To correct this problem, titration of the protein solution with urea and extrapolating back to zero urea concentration gives the spectral value for 100% denatured protein. With fluorescence as the observable we redefine F/F0 to F/F0extrap = 1.0 and require that the denatured-state baseline have this value as its intercept. By so doing, the 0%-100% scale-corrected DeltaG[D-->N0] values of RCAM-T1 folding in the presence of various osmolytes are then found to be identical, with small error, demonstrating that DeltaG[D-->N0] is independent of the osmolytes used. Such a finding is an important step in validating this quantity derived from the LEM as having the properties expected of an authentic thermodynamic parameter. The rank order of osmolyte efficacies in stabilizing RCAM-T1 is sarcosine > sucrose > sorbitol > proline > betaine > glycerol.  相似文献   

18.
Auton M  Bolen DW  Rösgen J 《Proteins》2008,73(4):802-813
Protein stability and solubility depend strongly on the presence of osmolytes, because of the protein preference to be solvated by either water or osmolyte. It has traditionally been assumed that only this relative preference can be measured, and that the individual solvation contributions of water and osmolyte are inaccessible. However, it is possible to determine hydration and osmolyte solvation (osmolation) separately using Kirkwood-Buff theory, and this fact has recently been utilized by several researchers. Here, we provide a thermodynamic assessment of how each surface group on proteins contributes to the overall hydration and osmolation. Our analysis is based on transfer free energy measurements with model-compounds that were previously demonstrated to allow for a very successful prediction of osmolyte-dependent protein stability. When combined with Kirkwood-Buff theory, the Transfer Model provides a space-resolved solvation pattern of the peptide unit, amino acids, and the folding/unfolding equilibrium of proteins in the presence of osmolytes. We find that the major solvation effects on protein side-chains originate from the osmolytes, and that the hydration mostly depends on the size of the side-chain. The peptide backbone unit displays a much more variable hydration in the different osmolyte solutions. Interestingly, the presence of sucrose leads to simultaneous accumulation of both the sugar and water in the vicinity of peptide groups, resulting from a saccharide accumulation that is less than the accumulation of water, a net preferential exclusion. Only the denaturing osmolyte, urea, obeys the classical solvent exchange mechanism in which the preferential interaction with the peptide unit excludes water.  相似文献   

19.
Osmolytes are small organic molecules accumulated by cells in response to osmotic stress. Although their effects on protein stability have been studied, there has been no systematic documentation of their influence on RNA. Here, the effects of nine osmolytes on the secondary and tertiary structure stabilities of six RNA structures of differing complexity and stability have been surveyed. Using thermal melting analysis, m-values (change in ΔG° of RNA folding per molal concentration of osmolyte) have been measured. All the osmolytes destabilize RNA secondary structure, although to different extents, probably because they favor solubilization of base surfaces. Osmolyte effects on tertiary structure, however, can be either stabilizing or destabilizing. We hypothesize that the stabilizing osmolytes have unfavorable interactions with the RNA backbone, which becomes less accessible to solvent in most tertiary structures. Finally, it was found that as a larger fraction of the negative charge of an RNA tertiary structure is neutralized by hydrated Mg2+, the RNA becomes less responsive to stabilizing osmolytes and may even be destabilized. The natural selection of osmolytes as protective agents must have been influenced by their effects on the stabilities of functional RNA structures, though in general, the effects of osmolytes on RNA and protein stabilities do not parallel each other. Our results also suggest that some osmolytes can be useful tools for studying intrinsically unstable RNA folds and assessing the mechanisms of Mg2+-induced RNA stabilization.  相似文献   

20.
Background and Aims Osmolytes are low-molecular-weight organic solutes, a broad group that encompasses a variety of compounds such as amino acids, tertiary sulphonium and quaternary ammonium compounds, sugars and polyhydric alcohols. Osmolytes are accumulated in the cytoplasm of halophytic species in order to balance the osmotic potential of the Na+ and Cl accumulated in the vacuole. The advantages of the accumulation of osmolytes are that they keep the main physiological functions of the cell active, the induction of their biosynthesis is controlled by environmental cues, and they can be synthesized at all developmental stages. In addition to their role in osmoregulation, osmolytes have crucial functions in protecting subcellular structures and in scavenging reactive oxygen species.Scope This review discusses the diversity of osmolytes among halophytes and their distribution within taxonomic groups, the intrinsic and extrinsic factors that influence their accumulation, and their role in osmoregulation and osmoprotection. Increasing the osmolyte content in plants is an interesting strategy to improve the growth and yield of crops upon exposure to salinity. Examples of transgenic plants as well as exogenous applications of some osmolytes are also discussed. Finally, the potential use of osmolytes in protein stabilization and solvation in biotechnology, including the pharmaceutical industry and medicine, are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号