首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Specificities of the changes in the systemic hemodynamics indices in the spontaneously hypertensive line SHR rats have been studied in comparison with the normotensive line WKY rats. It was demonstrated that an increase in blood pressure observed in the young hypertensive male rats, which have completed puberty (8 weeks old), is associated with the development of the hyperkinetic type arterial hypertension, which is characterized by increased cardiac minute output. It has been shown that SHR line male rats reveal the establishment of stable arterial hypertension due to a significant increase in the total peripheral resistance with the simultaneous recovery of the cardiac minute output by the 25th week of life. SHR line rats at the age of 15 weeks may be regarded as being in the period of transition from the hyperkinetic type arterial hypertension to stable arterial hypertension.  相似文献   

2.
The work has been performed on 40 normotensive and spontaneously hypertensive rats at the age of 6 months-1 year. In all the organs studied a direct dependence between the degree of changes in the intraorganic arterial walls and a relative content of the arterial vessels in the organ tissues has been revealed. The functional changes of the arterial bed of the organs mentioned in spontaneously hypertensive rats during hypertensive phase at the stage of stable hypertension, as a result of a prolonged adaptation transform into organic ones.  相似文献   

3.
The study was carried out in 30 subjects with mild primary hypertension and in 82 normotensive age-matched volunteers, 18-20 years of age. Hyperoxia test was used to withdraw the tonic chemoreceptor reflex drive. The following circulatory and respiratory effects of short lasting hyperoxia were observed in the hypertensive group and in most of the normotensive subjects yet with a family background of hypertension: a decrease in the mean arterial pressure, in total peripheral vascular resistance, and in forearm vascular resistance, and a significantly greater reduction of the resting ventilation as compared to the normotensive group. Our results suggest that the augmented arterial chemoreceptor drive is one of the mechanisms responsible for the elevated arterial blood pressure and total peripheral resistance in early human hypertension. The positive response to hyperoxia test in healthy subjects with a family background of hypertension suggests a familial occurrence of the hyperactivity of the arterial chemoreceptors.  相似文献   

4.
Structurally based resistance and vascular reactivity of the posterior body to noradrenaline were studied in normotensive rats and rats with DOCA-salt hypertension. The hypertension was induced in rats with intact sympathetic nervous system and in rats subjected to neonatal sympathectomy with guanethidine. During the prehypertensive stage, vascular sensitivity of the smooth muscles to noradrenaline was enhanced, with structural lesions being observed only in steady hypertension. Elevation of arterial pressure was accompanied by an increased vascular response to the stimulation of the sympathetic nerves. Sympathectomy prevented arterial pressure elevation and structural alterations in the vessels.  相似文献   

5.
Prolonged isometric relaxation in hypertensive aortic and caudal arterial smooth muscle has been demonstrated; however, isobaric relaxation in resistance arteries is more pertinent to studies in hypertension. A comparative study of mesenteric arterial isobaric relaxation times was made using spontaneously hypertensive rats (SHR), normotensive Wistar-Kyoto rats (WKY), and MK-421 treated SHR (treatment commenced at 8 weeks of age and was maintained until sacrifice). Relaxation rates of vessels constricting against a range of pressures and achieving different degrees of narrowing or changes in circumference were analyzed. Comparisons were made between SHR, WKY, and MK-421 treated SHR arteries that had constricted from the same initial circumference and against the same magnitude of pressure. The SHR mesenteric arteries relaxed at a slower rate than did the WKY vessels. The normotensive MK-421 treated SHR showed the same prolonged relaxation rate as did the untreated SHR preparations. Thus the slower rate of relaxation in SHR arteries does not appear to be a consequence of the hypertension. Such prolonged time for narrowing would function to increase the average peripheral resistance and thus may contribute to the initiation and maintenance of increased blood pressure.  相似文献   

6.
An experimental model for investigating the disparate effects of obesity and hypertension on the heart was developed by ligation of the aorta of male Sprague-Dawley rats made obese through ad libitum feeding. Experimental obesity was associated with an increased body fat and cardiac muscle mass, yet a normotensive systemic arterial pressure. Aortic ligation produced an elevated mean arterial pressure and resting heart rate, whereas body weight was similar to that of normotensive lean control rats. Obesity and hypertension together were associated with a significantly increased percent body fat, mean arterial pressure, and left ventricular mass compared with lean controls, whereas pressure and left ventricular weight were greater than those observed in rats with only obesity or hypertension. Cardiac adaptations corrected for body weight indicated that left ventricular weight increased as a function of body weight and body fat, but hypertension produced left ventricular adaptations independent of these variables. These initial studies indicate an additional contribution of hypertension to the left ventricular adaptations of obesity, and this model could therefore be used in future investigations concerning the cardiovascular effects of the simultaneous occurrence of these separate diseases.  相似文献   

7.
Deoxycorticosterone pivalate (2.5 mg/kg) given intramuscularly on four occasions 10-15 days apart over a period of 45 days to unilaterally nephrectomized adult male mongrel dogs, receiving as drinking solution 0.9% NaCl in 5% dextrose, resulted in an average sustained rise in the mean arterial blood pressure of 30 mm Hg (1 mm Hg - 133 N/m2) in 60% of the animals. Hypertensive dogs had in their arterial tissues generally more sodium, potassium, magnesium, and calcium than the similarly treated but non-hypertensive dogs, but compared to the tissues of operated untreated or unoperated normotensive dogs, only sodium and calcium were significantly higher. The dogs who were similarly treated but did not develop hypertension had in their arterial tissues less sodium, potassium, and magnesium than operated untreated or unoperated normotensive dogs. Norepinephrine content in the branches of mesenteric arteries of all deoxycorticosterone- and NaCl-treated animals, irrespective of their blood pressure, was significantly lower, and in the myocardium significantly higher, than either the unoperated normotensive or operated but not further treated dogs. It is concluded, therefore, that in deoxycorticosterone + NaCl treatment the dogs which developed hypertension had more arterial sodium, potassium, magnesium, and calcium than those who were similarly treated but remained within the limits of normal blood pressure, and that there was no difference between hypertensive and non-hypertensive dogs in regard to their cardiovascular norepinephrine content.  相似文献   

8.
Adrenergic mechanisms of blood pressure regulation were studied in a newly developed strain of rats with inherited stress-provoked arterial hypertension, spontaneously hypertensive rats (SHR) and normotensive Wistar rats. A number of adrenergic agonists (noradrenaline, adrenaline, phenylephrine, clonidine, naphazoline, isoproterenol, dobutamine, Alupent) were infused into the lateral brain ventricle under nembutal anesthesia and the reaction of the peripheral blood pressure was measured. It was shown that blood pressure reactions were similar in rats with inherited stress-provoked arterial hypertension and in SHR but significantly differed from those of normotensive Wistar rats. The data obtained suggest that the development of inherited hypertension was accompanied by changes in alpha 1 to alpha 2 adrenoreceptor ratio in pressor and depressor brain regions. A decrease in the depressor effect after stimulation of beta 1 and beta 2 receptors has been also observed.  相似文献   

9.
Oxidative stress plays an important role in arterial hypertension and propionyl-L-carnitine (PLC) has been found to protect cells from toxic reactive oxygen species. In this work, we have evaluated the antioxidant capacity of chronic PLC treatment in spontaneously hypertensive rats (SHR) by measuring the activity of antioxidant enzymes and the lipid peroxidation in liver and cardiac tissues. The activity of glutathione peroxidase was decreased in liver and cardiac tissues of SHR when compared with their normotensive controls, Wistar- Kyoto (WKY) rats, this alteration being prevented by PLC treatment. Glutathione reductase activity was increased in hypertensive rats and no effect was observed after the treatment. No significant changes in superoxide dismutase activity were observed among all experimental groups. Liver of hypertensive rats showed higher catalase activity than that of normotensive rats, and PLC enhanced this activity in both rat strains. Thiobarbituric acid reactive substances, determined as a measure of lipid peroxidation, were increased in SHR compared with WKY rats, and PLC treatment decreased these values not only in hypertensive rats but also in normotensive ones. The content of carnitine in serum, liver and heart was higher in PLC-treated rats, but PLC did not prevent the hypertension development in young SHR. In addition, triglyceride levels, which were lower in SHR than WKY rats, were reduced by chronic PLC treatment in both rat strains. These results demonstrate: i) the hypotriglyceridemic effect of PLC and ii) the antioxidant capacity of PLC in SHR and its beneficial use protecting tissues from hypertension-accompanying oxidative damage.  相似文献   

10.
The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na(+) reabsorption. Recently we demonstrated that Ca(2+) signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na(+)/Ca(2+) exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca(2+) signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P < 0.001; n = 16 each) rats. Pressurized mesenteric resistance arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1-100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca(2+) signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca(2+). These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca(2+) release and increased Ca(2+) entry, respectively. The increased SR Ca(2+) release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ~70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca(2+) signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca(2+) signaling. These molecular and functional changes provide a mechanism for the increased peripheral vascular resistance (whole body autoregulation) that underlies the sustained hypertension.  相似文献   

11.
The relationship between sympathetic innervation and arterial medial development has been examined in normotensive, hypertensive, and diabetic rats. Using the jejunal artery as a model, the number of nerve fibres innervating the artery as determined from fluorescent preparations, and the medial thickness and lumen diameter as measured from resin embedded specimens were correlated from animals prepared in various ways. The rats used were normal Sprague-Dawley (SD), SD with induced hypertension, SD with diabetes induced with streptozotocin, SD sympathectomized with 6-hydroxydopamine, spontaneously hypertensive rats (SHR), SHR treated with capsaicin to prevent hypertension development, Wistar Kyoto rats (WKY), and WKY treated with capsaicin. Examination of the jejunal arteries from these rats at 12 weeks of age following normal development, or 8 weeks of hypertension development, or 8 and 12 weeks of diabetes, showed that increased innervation occurred in the SHR under all conditions, and in the diabetic rats after 8 weeks of diabetes. Medial hypertrophy occurred in the SHR and in the SD hypertensive only. It is concluded that the special relationship which exists between the sympathetic innervation and arterial media in the SHR does not occur during hypertension development in the SD rat, nor is it necessary for normal medial development in the SD rat. The sympathetic innervation does appear to have a trophic influence on vascular smooth muscle of diabetic rats, at least in the early stages of the disease.  相似文献   

12.
The ISIAH rat strain with stress-sensitive arterial hypertension was intentionally selected to study the role of stress as a factor in the development of arterial hypertension. This study aimed to determine the role of reactive oxygen and nitrogen species (ROS and RNS) in the pathogenesis of hypertension in ISIAH rats. The nitric oxide concentrations measured by EPR were found to be significantly higher for hypertensive ISIAH rats compared with that for normotensive Wistar rats in both the aortic wall (2 times) and cerebellum (1.5 times). The activity of superoxide dismutase measured in the blood of ISIAH rats was found to be about 1.5 times lower compared with that of Wistar rats. These data support the suggestion that ROS and RNS, including superoxide radicals and nitric oxide, may play an important role in development of stress-induced hypertension in ISIAH rats. The tissue content of reduced thiols has been considered as a marker of oxidative damage. To study the tissue oxidative status we used an EPR method for quantitative determination of SH groups. The concentration of reduced thiols in the blood of ISIAH rats was much lower than that in Wistar rats (0.6 +/- 0.05 and 1.57 +/- 0.1 mM, respectively).  相似文献   

13.
Spontaneous and reflex activities of sympathetic nerve were compared in animals with arterial hypertension of different aetiology. Reflex discharges elicited by single-shock stimulation of afferent fibres were recorded. In acute experiences on anaesthetized rats with renovascular and spontaneous (SHR) model of arterial hypertension, electric basal and evoked activity (somatosympathetic reflex) in cervical sympathetic trunk were recorded. It is shown, that the spontaneous electric activity in sympathetic nerve of hypertensive rats is larger than spontaneous activity of normotensive control animals. The somatosympathetic reflex in hypertensive rats differs from that of control animals. In rats with renovascular model of hypertension, the reflex magnitude is reduced, and in the SHR the reflex is increased. Time characteristics of the reflex in hypertensive rats differed among them. It is suggested that functional activities of the brain stem in rats with different arterial hypertension model are unequal.  相似文献   

14.
Aorta-coarcted hypertensive rats and sham-operated normotensive rats were compared in order to assess the contribution of sympathetic nervous system activity to the elevated blood pressure in these rats at an early (6 days) and chronic (42 days) stage of hypertension. Norepinephrine (NE), epinephrine (E) and dopamine (DA) levels were quantitated in plasma, heart and vascular tissues (aorta, inferior vena cava, mesenteric artery and vein) using a radioenzymatic procedure. Body weight was significantly reduced and mean arterial blood pressure (MABP) significantly increased in the coarcted rats at both stages of hypertension. Plasma catecholamines did not differ at either stage of hypertension. The NE content of the heart and mesenteric artery was significantly decreased in the coarcted rats at both stages of hypertension but unchanged in the other vessels studied. E and DA levels in the heart and all vasculature analyzed remained unaltered at both stages of hypertension. The present results suggest that neither E nor DA makes a major contribution to the development and maintenance of hypertension in the aorta-coarcted rat. The observation of the reduced cardiac NE concentration in the coarcted rats together with literature reports of similar observations in other animal models of hypertension suggests that myocardial NE depletion is a common feature of the hypertension and not dependent on the methodology used to produce that hypertension.  相似文献   

15.
The aim of this study was to determine the relative contribution of nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF) and prostanoids in histamine-induced relaxation of isolated pulmonary artery from normotensive and hypertensive rats. The hypertension was induced by oral administration of NO synthase inhibitor N(G)-nitro-L-arginine methylester (L-NAME, 50 mg/kg/day) to normotensive rats for 8 weeks. In phenylephrine-precontracted arterial rings the histamine-induced relaxation was significantly reduced in L-NAME-treated rats compared to the controls. Indomethacin (cyclooxygenase inhibitor) and glibenclamide (ATP-sensitive K+-channel blocker) did not inhibit the relaxation response in either control or hypertensive rats. On the other hand, tetraethylammonium (TEA), a K+-channel blocker with a broad specificity, significantly reduced histamine-induced relaxation in the pulmonary artery from both groups examined. The TEA-resistant relaxation was completely abolished by additional administration of L-NAME to the incubation medium. The results indicate that histamine-induced relaxation of the pulmonary artery in both normotensive and hypertensive rats is mediated mainly by nitric oxide, whereas EDHF seems to play a minor role.  相似文献   

16.
The effect of captopril treatment on neurally induced vasoconstrictor and vasodilator responses was examined in the isolated mesenteric arterial bed from normotensive and one-kidney, one clip hypertensive (1K1C) rats. In isolated mesenteric beds, electrical field stimulation (EFS) of perivascular nerves at basal tone induced a frequency-dependent increase in perfusion pressure that was greater in preparations from hypertensive rats compared with those from normotensive rats. Captopril treatment was associated with a decrease in vasoconstrictor responses in the hypertensive group compared with its non-treated control. Responses to norepinephrine (320 ng) were greater in hypertensive than normotensive groups; captopril reduced this response only in the hypertensive group. In preconstricted mesenteric arteries perfused with solutions containing guanethidine (5 microM) and atropine (1 microM), EFS elicited a frequency-dependent decrease in perfusion pressure that was abolished by tetrodotoxin (1 microM). Vasodilator responses to EFS were not affected by captopril treatment, although they were smaller in the hypertensive group. Acetylcholine (10 ng) induced similar decreases in perfusion pressure of normotensive and 1K1C groups; captopril did not influence these responses. These results indicate that captopril treatment does not affect the reduced neurogenic vasodilation but normalizes the augmented sympathetic-mediated vasoconstrictor responses of mesenteric resistance vessels of chronic 1K1C hypertensive rats.  相似文献   

17.
The immediate and long-lasting effects of environmental stress during prepubertal life on arterial blood pressure (AP) were studied in rats with inherited stress-induced arterial hypertension (ISIAH) and normotensive Wistar rats. Two models of chronic stress (the 21st-32nd postnatal days) were used: repeated handling and unpredictable stress of daily exposures to a variety of mild physical or psychoemotional stressors. Chronic prepubertal stress did not affect the basal or stress-induced AP levels in young or adult Wistar rats. In ISIAH rats, chronic stress during the early phase of hypertension development did not accelerate its formation and did not augment its manifestation in adults. Moreover, the basal AP was decreased in young and adult ISIAH rats exposed to prepubertal stress as compared to the age-matched controls. AP elevation under acute stress conditions was lower in young ISIAH rats exposed to unpredictable stress. No long-lasting effect of prepubertal stress on acute stress-induced AP elevation in adults was found. The conclusion was drawn that moderate physical and psychoemotional training at prehypertensive stage can positively affect the development of inherited arterial hypertension.  相似文献   

18.
Both isometric and isotonic relaxation rates have previously been reported to be decreased in caudal arterial and mesenteric resistance arterial smooth muscle from 16- to 21-week-old spontaneously hypertensive rats (SHR) compared with muscle from age-matched normotensive Wistar-Kyoto rats (WKY). An increased maximum velocity of shortening (Vmax) and an increased shortening ability (delta Lmax) have also been reported for arterial smooth muscle from 16- to 21-week-old SHR. It has been suggested that both increased narrowing and prolonged narrowing of arteries contribute to the development of hypertension. However, SHR Vmax is not different from WKY Vmax when studying arterial muscle from older (28- to 31-week-old) rats. Thus increased arterial narrowing ability cannot be a contributing factor to the maintenance of hypertension. In this study the role of relaxation rate in the maintenance of hypertension was examined by comparing the relaxation rates of isometric and isotonic contractions of caudal arterial strips from 16- to 21-week-old SHR (n = 9) and WKY (n = 8) and from 28- to 31-week-old SHR (n = 7) and WKY (n = 5). While relaxation rates were lower for 16- to 21-week-old SHR compared with age-matched WKY preparations for both isometric and isotonic contractions, only isometric relaxation rates were found to be different in 28- to 31-week-old SHR compared with 28- to 31-week-old caudal arterial muscle (p less than 0.05). Vmax tended to normalize from a once-elevated velocity, while isometric relaxation rate remained decreased in SHR with ageing and (or) with progression of the hypertensive condition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
For the study of genetic and physiological mechanisms of inherited stress-sensitive arterial hypertension, specific binding of ligands of alpha 1-, alpha 2- and beta-adrenoceptors was measured in 2 strains of rats: Wistar normotensive and ISSAH rats (rats with inherited stress-sensitive arterial hypertension). The maximal binding sites (Bmax) and apparent dissociation constants (Kd) were studied with the alpha 1-adrenergic antagonist 3H-prazosin, alpha 2-adrenergic agonist 3H-clonidine and 3H-dihydroalprenolol, a beta 1-receptor antagonist. Four brain regions were investigated: frontal cortex, hypothalamus, pons and medulla oblongata. In comparison with normotensive controls, hypertensive rats had significantly greater density of the alpha 1-adrenoceptors in the medulla oblongata. However, the number of hypothalamic alpha 1-adrenoceptors was significantly reduced in these animals. The same significantly lower alpha 2-adrenoreceptor density was found in the hypothalamus and the pons, and lower, beta-adrenoceptors density in the medulla oblongata. It was concluded that brain adrenoceptors are involved in the mechanisms of development of inherited stress-sensitive hypertensive syndrome.  相似文献   

20.
With the techniques of specific radioimmunoassay and gel filtration it was found that CGRP was distributed in various tissues of normotensive (WKY) and spontaneously hypertensive rats (SHR) with the highest concentration in the lumbar spinal cord (1197 +/- 94.8 pg/mg tissue) and the lowest in the auricle (15.0 +/- 2.1 pg/mg tissue). In comparison with WKY, CGRP concentration in the plasma was decreased and in the abdominal aorta and hypothalamus was increased in SHR. Gel filtration revealed only one major CGRP molecular form in the tissues. In addition, CGRP reduced the mean arterial pressure (MAP) in SHR in a dose-dependent manner. These data suggest that CGRP may play an important role in the pathogenesis of hypertension and its possible therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号