首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammary epithelial cells (HC11) chronically adapted to grow in a low‐magnesium (0.05 mM vs. 0.5 mM) or in a high‐magnesium (40 mM) medium were used to investigate on the mechanisms of cell magnesium transport under conditions of non‐physiological magnesium availability. Magnesium influx was higher in low‐magnesium cells compared to control or high‐magnesium cells, whereas magnesium efflux was higher in high‐magnesium cells compared to control and low‐magnesium cells. Magnesium efflux was partially inhibited by imipramine, inhibitor of the Na+/Mg2+ exchange. Using a monoclonal antibody detecting a ~70 kDa protein associated with Na+/Mg2+ exchange activity, we found that the expression levels of this protein were proportional to magnesium efflux capacity, that is, high‐magnesium cells > control cells > low‐magnesium cells. As for magnesium influx, this was abolished by Co(III)hexaammine, inhibitor of magnesium channels. Surprisingly, we found that cells grown in low magnesium upregulated mRNA for the magnesium channel TRPM6, but not for other channels like TRPM7 or MagT1. TRPM6 mRNA was also rapidly upregulated or downregulated in HC11 cells deprived of magnesium or in low‐magnesium cells re‐added with magnesium, respectively. TRPM6 protein levels, as assessed by Western blot and immunofluorescence, underwent similar changes under comparable conditions. We propose that mammary epithelial cells adapt to decreased magnesium availability by upregulating magnesium influx via TRPM6, and counteract increased magnesium availability by increasing magnesium efflux primarily via Na+/Mg2+ exchange. These results show, for the first time, that TRPM6 contributes to regulating magnesium influx in mammary epithelial cells, similar to what is known for intestine and kidney. J. Cell. Physiol. 222: 374–381, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Summary Cytological changes in the calcium-sensitive (Ca-s) cells (formerly termed PAS-positive cells) of the pars intermedia were investigated in the goldfish after adaptation to deionized water (DW), with or without addition of sodium, potassium and magnesium. These ions were added as chloride salts at concentrations similar to those present in fresh water (FW). The marked stimulation of the Ca-s cells is not inhibited in DW supplemented with Na+ (0.35 mM/1), K+ (0.05 mM/1), and Mg2+ (0.2mM/1) for a period of 24 days. The inhibition of the response to DW with calcium chloride (2 mM/1) is reproduced with calcium formiate (2 mM/1). These data show that chloride ions are not responsible for the regression of the Ca-s cells observed in goldfish kept in DW supplemented with calcium chloride. The effect of calcium ions on the Ca-s cells appears to be specific. These results support the hypothesis that the Ca-s cells synthesize a factor (hypercalcin?) involved in calcium regulation, and that its release is influenced by the calcium content of the environment. The role of the pars intermedia in calcium metabolism is strengthened by the present results. Biochemical data suggest the presence of a hypercalcemic factor in the pituitary of fish (Parsons et al. 1978) and are in agreement with the present cytological findings.  相似文献   

3.
Extracts of Pseudomonas sp. CBS3 converted 4-chlorobenzoate into 4-hydroxybenzoate. The enzyme responsible for this conversion was enriched by ammonium sulphate fractionation (30–60% saturation, 1.3-fold). The optimum conditions for the reaction were 30–35°C and pH 7–7.5. The enzyme was activated by Mn2+ (1 mM final concentration) up to 120-fold, and by Co2+ (1 mM final concentration) up to 60-fold. Other divalent ions had no effect. EDTA inhibited the enzyme. 4-Bromobenzoate and 4-iodobenzoate were substrates for the enzyme, but 4-fluorobenzoate was not converted.  相似文献   

4.
Vasopressin-sensitive pig kidney adenylate cyclase is sensitive to several effectors, such as Mg2+, other divalent cations, and guanyl nucleotides. The purpose of the present study was to compare the main characteristics of adenylate cyclase activation by vasopressin, Mg2+, and GMPPNP, respectively. Mg2+·ions were shown to exert at least three different effects on adenylate cyclase. The substrate of the adenylate cyclase reaction is the Mg-ATP complex. Mg2+ interacts with an enzyme regulatory site. Finally, Mg2+ can modulate the hormonal response, with Mg2+ions affecting the coupling function–that is, the quantitative relationship between receptor occupancy and adenylate cyclase activation. At all the magnesium concentrations tested, from 0.25 mM to 16 mM, adenylate cyclase activation was not a direct function of receptor occupancy. At low Mg2+ concentrations, adenylate cyclase activation dose-response curve to the hormone tended to be superimposable to the hormone dose-binding curve. These results suggest a role of magnesium at the coupling step between the hormone-receptor complex and adenylate cyclase response. Cobalt, but not calcium, ions could exert the same effects as Mg2+ ions on this coupling step. GMPPNP induced considerable adenylate cyclase activation (15 to 35 times the basal value). Activation by GMPPNP was highly time and temperature dependent. At 30° C, a 20 to 60 min preincubation period in the presence of GMPPNP was needed to obtain maximal activation. The higher the dose of GMPPNP in the medium, the longer it took to reach equilibrium. At 15° C, activation was still increasing with time after 3 hr preincubation in the presence of the nucleotide. GMPPNP was active in a 10?8 M to 10?5 M concentration range. Unlike the results obtained with lysine vasopressin, the kinetic characteristics of dose-dependent adenylate cyclase activation curves by GMPPNP were unaffected by varying Mg2+ concentrations except for the increase in velocity when raising Mg2+ concentration. It was not clear whether or not the activation processes by the hormone and by GMPPNP had common mechanisms.  相似文献   

5.
Studies using a Brij 58 detergent extract of rat liver mitochondria reveal that these organelles can catalyze the time-dependent incorporation of a portion of [3H]ATP into an acid-insoluble product. The activities studied using 8 mM Mn++ or 15 mM Mg++ are stimulated by dithiothreitol and by CTP, GTP or UTP, while that studied using 2 mM Mg++ is not. The incorporated tritium remains bound after incubation in the presence of excess unlabeled ATP and chromatography on Sephadex G-25. The labeled product is insensitive to ribonuclease A and snake venom phosphodiesterase, but is sensitive to pronase. The attached portion of the ATP molecule released upon treatment of the product has been tentatively identified as adenosine for the activities studied using 2 mM Mg++ or 8 mM Mn++ and as AMP (80%) and adenosine (20%) for the reaction studied using 15 mM Mg++.  相似文献   

6.
Summary The formation of pyrophosphate (PPi) by condensation of orthophosphate (Pi) at low temperature (37°C) in the absence of condensing or phosphorylating agents could have been an ancient process in chemical evolution. In the present investigation the synthesis of32PPi from32Pi was carried out at pH 8.0 and PPi was found in larger amounts in the presence of insoluble Pi (with calcium or manganese ions) than in its absence (with magnesium ions, or with no divalent cations present). After 10 days of incubation in the presence of precipitated calcium phosphate, about 1.6 nmol/ml of PPi was formed (0.057% yield relative to insoluble Pi). The hypothesis that the reaction is dependent on precipitated Pi was reinforced by the effect of adding dimethyl sulfoxide (2.1–9.9 M) in the presence of magnesium ions: the amount of magnesium phosphate precipitated in the presence of the organic solvent was proportional to the amount of PPi formed. The large and negative activation entropies found in aqueous media with calcium ions and in a medium containing 11.3 M dimethyl sulfoxide with magnesium ions suggest that the reaction was favored by a hydrophobic phenomenon at the surface of solid Pi. This reaction could serve as a model for prebiotic formation of PPi.  相似文献   

7.
We developed a cell-free protein synthesis system that produces more than 1mg/ml of recombinant proteins in two hours. A basal system that supports the stable maintenance of ATP and amino acids was constructed by using high concentrations of CP (100 mM) and amino acids (3 mM). Approximately 0.6 mg/ml of protein was produced during the batch incubation of the basal system. We found that the accumulation of inorganic phosphate reduces the concentration of free magnesium ions and that there exists a critical concentration of magnesium at which the protein synthesis is halted. Based on this finding, we attempted to extend the duration of the protein synthesis by keeping the magnesium concentration sufficiently high throughout the reaction period. The protein synthesis reaction continued for at least 2 h when the reaction was repeatedly supplemented with magnesium, and approximately 1.2 mg/ml of active CAT or GFP was produced. The simple, fast, and highly productive cell-free protein synthesis system described herein should offer a versatile platform for the preparation of protein molecules in various post-genomic efforts.  相似文献   

8.
During growth of Ricinus communis seedlings, magnesium ions are mobilized in the endosperm, taken up by and accumulated to very high levels (150 μmol·g FW?1) in the cotyledons, and translocated to hypocotyl and roots. The magnesium gain from days 6 to 7 in the cotyledons and the seedling axis necessitates a total up-take rate of 600 nmol·h?1-seedling?1 and the phloem translocation rate must amount to 200 nmol·h?1. seedling?1. The phloem loading of magnesium and the regulatory properties of this process were investigated, making specific use of the ability to collect pure phloem sap from the cut hypocotyl of 6-d-old Ricinus seedlings. The concentration of magnesium in sieve-tube sap (5 mM) was fairly constant under many incubation conditions, e.g. incubation in magnesium-free buffer, incubation with different cations (K+, Na+, NH 4 + ) or anions (Cl?, NO 4 - , SO 4 2- ), or incubation with sucrose and amino acids. Even addition of magnesium chloride to the cotyledons did not enhance phloem loading of magnesium ions. Therefore the high magnesium content of the cotyledons was sufficient for continuous phloem loading of magnesium, irrespective of external ionic conditions. Also, the flow rate of sieve-tube sap did not influence the magnesium concentration in the sap. Only the incubation with sulfate and phosphate ions increased the magnesium-ion concentration in the phloem. Magnesium sulfate offered to the cotyledons caused a threefold increase of magnesium ions in the sieve-tube sap, which was inhibited by Na+, NH 4 + and Ca2+ in rising order, but not by K+. Incubation with phosphate for a prolonged period (8 h) led to an increased mobilization of intra-cotyle-donary magnesium and an enhanced phloem loading of mobilized magnesium. It is concluded that phosphate availability is a decisive factor for mobilization and translocation of magnesium ions within the plant.  相似文献   

9.
Multiple ecto-phosphoproteins of the goat cauda-epididymal intact spermatozoa have been shown to undergo dephosphorylationin vitro by endogenous phosphoprotein phosphatase(s) located on the sperm outer surface. The major ecto-phosphoproteins that are dephosphorylated have molecular masses of 27, 40, 70, 116 and 205 kDa. The cell surface dephosphorylation reaction is not dependent on bivalent metal ions. Mg2+ (5 mM), Mn2+ (5 mM), orthovanadate (200ΜM) and cAMP (5 ΜM) have no effect on this surface reaction whereas it is inhibited nearly 50% by Co2+ or Zn2+ (1 mM). Spermidine (5 mM), or Ca2+ (1mM) inhibited to a small extent (approx. 25%) the cell surface dephosphorylation of proteins.  相似文献   

10.
The hairpin ribozyme is a small catalytic RNA that achieves an active configuration by docking of its two helical domains in an antiparallel fashion. Both docking and subsequent cleavage are dependent on the presence of divalent metal ions, such as magnesium, but there is no evidence to date for direct participation of such ions in the chemical cleavage step. We show that aminoglycoside antibiotics inhibit cleavage of the hairpin ribozyme in the presence of metal ions with the most effective being 5-epi-sisomicin and neomycin B. In contrast, in the absence of metal ions, a number of aminoglycoside antibiotics at 10 mM concentration promote hairpin cleavage with rates only 13-20-fold lower than the magnesium-dependent reaction. We show that neomycin B competes with metal ions by ion replacement with the postively charged amino groups of the antibiotic. In addition, we show that the polyamine spermine at 10 mM promotes efficient hairpin cleavage with rates similar to the magnesium-dependent reaction. Low concentrations of either spermine or the shorter polyamine spermidine synergize with 5 mM magnesium ions to boost cleavage rates considerably. In contrast, at 500 microM magnesium ions, 4 mM spermine, but not spermidine, boosts the cleavage rate. The results have significance both in understanding the role of ions in hairpin ribozyme cleavage and in potential therapeutic applications in mammalian cells.  相似文献   

11.
The apparent equilibrium constants (K') for six reactions catalyzed by aminoacyl-tRNA synthetases from Escherichia coli were measured, the equations for the magnesium dependence of the equilibrium constants were derived, and best-fit analyses between the measured and calculated values were used. The K' values at 1 mM Mg(2+) ranged from 0.49 to 1.13. The apparent equilibrium constants increased with increasing Mg(2+) concentrations. The values were 2-3 times higher at 20 mM Mg(2+) than at 1 mM Mg(2+), and the dependence was similar in the class I and class II synthetases. The main reason for the Mg(2+) dependence is the existence of PP(i) as two magnesium complexes, but only one of them is the real product. AMP exists either as free AMP or as MgAMP, and therefore also has some effect on the measured equilibrium constant. However, these dependences alone cannot explain the measured results. The measured dependence of the K' on the Mg(2+) concentration is weaker than that caused by PP(i) and AMP. Different bindings of the Mg(2+) ions to the substrate tRNA and product aminoacyl-tRNA can explain this observation. The best-fit analysis suggests that tRNA reacts as a magnesium complex in the forward aminoacylation direction but this given Mg(2+) ion is not bound to aminoacyl-tRNA at the start of the reverse reaction. Thus Mg(2+) ions seem to have an active catalytic role, not only in the activation of the amino acid, but in the posttransfer steps of the aminoacyl-tRNA synthetase reaction, too.  相似文献   

12.
Mg2+-selective microelectrodes have been used to measure the intracellular free Mg2+ concentration in frog skeletal muscle fibers. Glass capillaries with a tip diameter of less than 0.4 μm were backfilled with the Mg2+ sensor, ETH 1117. In the absence of interfering ions, they gave Nernstian responses between 1 and 10 mM free Mg2+. In the presence of an ionic environment resembling the myoplasm, the microelectrode response was sub Nernstian (18–24 mV) but still useful. The electrodes were calibrated before and after muscle-fiber impalements. In quiescent fibers from sartorius muscle (Rana pipiens), with resting membrane potentials not less than ?82 mV, the intracellular free Mg2+ concentration was 3.8±0.41 (S.E.) mM (n=58) at 22°C. No significant change in the intracellular free Mg2+ was observed following extensive (approx. 6 h) incubation in Mg2+-free media. Increasing the external concentration of magnesium from 4 to 20 mM (approx. 15 min) produced a slow and small enhancement (1.8 mM) of [Mg2+]i, which was fully reverted when the divalent cation was removed from the bathing solution. No change in ionic magnesium resting concentration was observed when the muscle fibers were treated either with caffeine 3 mM or with Na+-free solutions. In depolarized muscle fibers (?23±2.7 mV) treated with 100 mM K+, the myoplasmic [Mg2+] was 3.7±0.45 (S.E.) mM, n=6, immediately after the spontaneous relaxation of the contracture. Similar determinations in muscle fibers during stimulation at low frequency (5 Hz), and after fatigue development, showed no changes in the concentration of free cytosolic Mg2+. These results point out that [Mg2+]i is not modified under these three different experimental conditions.  相似文献   

13.
Accurate predictions of DNA stability in physiological and enzyme buffers are important for the design of many biological and biochemical assays. We therefore investigated the effects of magnesium, potassium, sodium, Tris ions, and deoxynucleoside triphosphates on melting profiles of duplex DNA oligomers and collected large melting data sets. An empirical correction function was developed that predicts melting temperatures, transition enthalpies, entropies, and free energies in buffers containing magnesium and monovalent cations. The new correction function significantly improves the accuracy of predictions and accounts for ion concentration, G-C base pair content, and length of the oligonucleotides. The competitive effects of potassium and magnesium ions were characterized. If the concentration ratio of [Mg (2+)] (0.5)/[Mon (+)] is less than 0.22 M (-1/2), monovalent ions (K (+), Na (+)) are dominant. Effects of magnesium ions dominate and determine duplex stability at higher ratios. Typical reaction conditions for PCR and DNA sequencing (1.5-5 mM magnesium and 20-100 mM monovalent cations) fall within this range. Conditions were identified where monovalent and divalent cations compete and their stability effects are more complex. When duplexes denature, some of the Mg (2+) ions associated with the DNA are released. The number of released magnesium ions per phosphate charge is sequence dependent and decreases surprisingly with increasing oligonucleotide length.  相似文献   

14.
Previous work has shown that incubation of hippocampal slices in medium without added calcium markedly attenuates the capacity of vasoactive intestinal peptide (VIP) to elevate cyclic AMP levels. The present studies examined the mechanism that confers calcium dependence on VIP stimulation of cyclic AMP accumulation in hippocampal slices. Calcium dependence was apparent immediately on slice preparation and was reversible only if calcium ions were added back very early during slice incubation (within 5 min). The cyclic AMP response to VIP was not abolished by preincubating slices in 100 microM adenosine, suggesting that calcium-dependent, VIP-induced release of adenosine does not mediate VIP elevation of cyclic AMP. VIP-stimulated cyclic AMP accumulation was not decreased by agents that block calcium influx (verapamil, nifedipine, magnesium ions), or by calmodulin antagonists (trifluoperazine, calmidozolium). In fact both verapamil (100 microM) and magnesium (14 mM) augmented VIP stimulation of cyclic AMP generation. Incubation of slices with the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine (MIX) did not affect VIP activation of cyclic AMP accumulation if slices were incubated without added calcium, but MIX did enhance VIP elevation of cyclic AMP content in slices incubated with calcium. Thus calcium dependence of the cyclic AMP response to VIP in hippocampal slices is unlikely to result from VIP-dependent calcium influx, from interactions with calmodulin, or from calcium-inhibited phosphodiesterase(s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
X. Sun  L.N. Chan  N.J. Sucher   《Phytomedicine》2005,12(3):173-177
Aqueous extracts of the traditional Chinese medicine Danshen, the dried roots of Salvia miltiorrhiza Bunge (Labiatae), blocked N-methyl-D-aspartate (NMDA) evoked currents in cerebrocortical neurons in vitro. The block of the NMDA-evoked currents was voltage dependent and showed the negative slope conductance reminiscent of the effect of Mg2+ ions. Atomic absorption spectrophotometry (AAS) revealed that aqueous Danshen extracts contained approximately 9mM magnesium. Fractionation of the extracts by high performance liquid chromatography followed by patch clamp recording and AAS indicated that magnesium ions were present in two distinct fractions. One fraction contained approximately 5 mM magnesium and blocked NMDA-induced currents indicating that it contained mostly free Mg2+ ions, while a second fraction did not possess NMDA antagonist activity despite the presence of approximately 4 mM magnesium suggesting that Mg2+ in this fraction was mostly chelated. Following removal of the free Mg2+ by ion exchange chromatography, the previously observed block of the NMDA-induced currents was abolished. These data demonstrate that Danshen contains both free and chelated Mg2+. Free Mg2+ ions account for the NMDA antagonist activity of Danshen in vitro.  相似文献   

16.
Incubation of solubilized hormone-activated phosphodiesterase from isolated hepatocytes, under conditions likely to favour a dephosphorylation reaction, did not cause a loss of the hormone activation. If, however, the enzyme was incubated with Mg2+ (10 mM) while still associated with its membrane, and subsequently solubilized, the activity of the hormone-stimulated enzyme declined to the level seen in control cells.Diminution of hepatocyte ATP levels to about 20% of contol values, by incubation with fructose, blunted the effect of glucagon and abolished the effect of insulin on phosphodiesterase. More severe ATP depletion caused by dinitrophenol abolished the stimulation of the enzyme by both hormones. These effects were not considered likely to be due to altered hormone-binding and are consistent with the involvement of an energy-dependent step in the hormonal activation of phosphodiesterase.  相似文献   

17.
Resonances of the water exchangeable iminoprotons of the acceptor and D stem of yeast tRNAPhe have been assigned by means of Nuclear Overhauser Effects (NOE's). Assignments were made for spectra recorded from tRNA dialysed against a buffer with 110 mM sodium and 5 mM magnesium ions and against a buffer with 430 mM sodium and no magnesium ions. Remarkable is the assignment of a resonance at 13.6 - 13.7 ppm to the iminoproton of C11G24. This assignment as well as those of G1C72, G3C70, U7A66, U12A23 and C13G22 are different from those made previously on the basis of less direct evidence. NOE experiments performed at 45 degrees C support the view that the D stem together with the tertiary interaction U8A14 is one of the most stable parts of the molecule in the presence of magnesium ions. A comparison of the spectra recorded under the two different buffer conditions shows that an excess of 320 mM sodium ions is not capable to force the tRNA in the same conformation as 5 mM magnesium ions can do.  相似文献   

18.
The physiological concentration of free magnesium in Escherichia coli cells is about 1 mM, and there is almost no chloride in the cell. When the aminoacylation of tRNA by tyrosyl-tRNA synthetase was assayed at 1 mM free Mg2+, chloride (and sulphate) ions inhibited the reaction but acetate at the same concentration (< 200 mM) was not inhibitory. When the magnesium concentration was increased to 10 mM there was almost no chloride inhibition any more. Chloride strengthened the PPi inhibition, the Ki(app)(PPi) values at 1 mM free Mg2+ were 140, 120, and 56 microM at 0, 50 and 150 mM KCl, respectively. Chloride weakened the AMP inhibition, the corresponding values for Ki(app)(AMP) were 0.35, 0.5, and 0.9 mM. The value of Km(app)(tRNA(Tyr)) was clearly increased by chloride, being 22, 37, 93, and 240 nM at 0, 50, 100, and 150 mM KCl, respectively. Best-fit analyses of the PPi inhibition, AMP inhibition and Km(app)(tRNA) assays were accomplished using total rate equations. The analysis showed that the only kinetic events which are obligatory to explain the chloride effects are a weakened binding of Mg2+ to the tRNA before the transfer reaction and a weakened binding of Mg2+ to the Tyr-tRNA-enzyme complex after the transfer reaction. The dissociation constants for the former were 0.11, 0.3, and 2.8 mM and for the latter 0.6, 2.5, and 13 mM at 0, 50 and 150 mM KCl, respectively. Mg2+ is required for the reactive conformation of tRNA in the transfer reaction but chloride weakens its formation. After the transfer reaction the dissociation of Mg2+ from the aa-tRNA-enzyme complex enhances the dissociation of the aa-tRNA from the enzyme. The kinetics and the chloride effect were similar in the tyrosyl-tRNA synthetases from both Bacillus stearothermophilus and E. coli.  相似文献   

19.
Ion exchange or biosorptive processes for metalremoval generally lack specificity in metal bindingand are sensitive to ambient conditions, e.g. pH,ionic strength and the presence of metal chelators. Inthis study, cells of a genetically engineered Escherichia coli strain, JM109, which expressesmetallothionein and a Hg2+ transport system afterinduction were evaluated for their selectivity forHg2+ accumulation in the presence of sodium,magnesium, or cadmium ions and their sensitivity to pHor the presence of metal chelators during Hg2+bioaccumulation. The genetically engineered E.coli cells in suspension accumulated Hg2+effectively at low concentrations (0-20 µM) overa broad range of pH (3 to 11). The presence of 400 mMsodium chloride, 200 mM magnesium chloride, or100 µM cadmium ions did not have a significanteffect on the bioaccumulation of 5 µm Hg2+,indicating that this process is not sensitive to highionic strength and is highly selective against sodium,magnesium, or cadmium ions. Metal chelators usuallyinterfere with ion exchange or biosorptive processes.However, two common metal chelators, EDTA and citrate,had no significant effect on Hg2+ bioaccumulationby the genetically engineered strain. These resultssuggest that this E. coli strain could be usedfor selective removal of Hg2+ from waste water orfrom contaminated solutions which are resistant tocommon treatments. A second potential applicationwould be to remove Hg2+ from Hg2+-contaminated soil, sediment, or particulates bywashing them with a Hg2+ chelator andregenerating the chelator by passing the solutionthrough a reactor containing the strain.  相似文献   

20.
The effects on isometric tension of three divalent ions that block calcium channels, magnesium, cobalt, and cadmium, were tested in small bundles of rat soleus fibers. Cobalt, at a concentration of 2 or 6 mM, reversibly depressed twitch and tetanic tension and the depression was much greater in solutions containing no added calcium ions. Magnesium caused much less depression of tension than cobalt. The depression of tension was not accompanied by membrane depolarization or a reduction in the amplitude of action potentials. A reduction caused by 6 mM cobalt in the amplitude of 40 or 80 mM potassium contractures was not accompanied by a comparable reduction in tension during 200 mM potassium contractures, and could be explained by a shift in the potassium contracture tension-voltage curve to more positive potentials (by +7 mV on average). Similar effects were not seen with 2 or 6 mM magnesium. At a concentration of 20 mM, both cobalt and magnesium depressed twitch and tetanic tension, cobalt having greater effect than magnesium. Both ions shifted the potassium contracture tension-voltage curve to the right by +5 to +10 mV, caused a small depression of maximum tension, and slowed the time course of potassium contractures. Cadmium (3 mM) depressed twitch, tetanic, and potassium contracture tension by more than 6 mM cobalt, but experiments were complicated by the gradual appearance of large contractures that became even larger, and sometimes oscillatory, when the solution containing cadmium was washed out. It was concluded that divalent cations affect both activation and inactivation of tension in a manner that cannot be completely explained by a change in surface charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号