首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
4.
5.
Plant cold shock domain proteins (CSDPs) are DNA/RNA-binding proteins. CSDPs contain the conserved cold shock domain (CSD) in the N-terminal part and a varying number of the CCHC-type zinc finger (ZnF) motifs alternating with glycine-rich regions in the C-terminus. CSDPs exhibit RNA chaperone and RNA-melting activities due to their non-specific interaction with RNA. At the same time, there are reasons to believe that CSDPs also interact with specific RNA targets. In the present study, we used three recombinant CSDPs from the saltwater cress plant (Eutrema salsugineum)-EsCSDP1, EsCSDP2, EsCSDP3 with 6, 2, and 7 ZnF motifs, respectively, and showed that their nonspecific interaction with RNA is determined by their C-terminal fragments. All three proteins exhibited high affinity to the single-stranded regions over four nucleotides long within RNA oligonucleotides. The presence of guanine in the single-or double-stranded regions was crucial for the interaction with CSDPs. Complementation test using E. coli BX04 cells lacking four cold shock protein genes (ΔcspA, ΔcspB, ΔcspE, ΔcspG) revealed that the specific binding of plant CSDPs with RNA is determined by CSD.  相似文献   

6.
Pentatricopeptide repeat (PPR) gene family plays an essential role in the regulation of plant growth and organelle gene expression. Some PPR genes are related to fertility restoration in plant, but there is no detailed information in Gossypium. In the present study, we identified 482 and 433 PPR homologues in Gossypium raimondii (\(\hbox {D}_{5}\)) and G. arboreum (\(\hbox {A}_{2}\)) genomes, respectively. Most PPR homologues showed an even distribution on the whole chromosomes. Given an evolutionary analysis to PPR genes from G. raimondii (\(\hbox {D}_{5}\)), G. arboreum (\(\hbox {A}_{2}\)) and G. hirsutum genomes, eight PPR genes were clustered together with restoring genes of other species. Most cotton PPR genes were qualified with no intron, high proportion of \(\upalpha \)-helix and classical tertiary structure of PPR protein. Based on bioinformatics analyses, eight PPR genes were targeted in mitochondrion, encoding typical P subfamily protein with protein binding activity and organelle RNA metabolism in function. Further verified by RNA-seq and quantitative real-time PCR (qRT-PCR) analyses, two PPR candidate genes, Gorai.005G0470 (\(\hbox {D}_{5}\)) and Cotton_A_08373 (\(\hbox {A}_{2}\)), were upregulated in fertile line than sterile line. These results reveal new insights into PPR gene evolution in Gossypium.  相似文献   

7.
8.
Neuropathy target esterase (NTE) is involved in several disorders in adult organisms and embryos. A relationship between NTE and nervous system integrity and maintenance in adult systems has been suggested. NTE-related motor neuron disease is associated with the expression of a mutant form of NTE and the inhibition and further modification of NTE by organophosphorus compounds is the trigger of a delayed neurodegenerative neuropathy. Homozygotic NTE knockout mice embryos are not viable, while heterozygotic NTE knockout mice embryos yields mice with neurological disorders, which suggest that this protein plays a critical role in embryonic development. The present study used D3 mouse embryonic stem cells with the aim of gaining mechanistic insights on the role of Pnpla6 (NTE gene encoding) in the developmental process. D3 cells were silenced by lipofectamine transfection with a specific interference RNA for Pnpla6. Silencing Pnpla6 in D3 monolayer cultures reduced NTE enzymatic activity to 50% 20 h post-treatment, while the maximum loss of Pnpla6 expression reached 80% 48 h postsilencing. Pnpla6 was silenced in embryoid bodies and 545 genes were differentially expressed regarding the control 96 h after silencing, which revealed alterations in multiple genetic pathways, such as cell motion and cell migration, vesicle regulation, and cell adhesion. These findings also allow considering that these altered pathways would impair the formation of respiratory, neural, and vascular tubes causing the deficiencies observed in the in vivo development of nervous and vascular systems. Our findings, therefore, support the previous observations made in vivo concerning lack of viability of mice embryos not expressing NTE and help to understand the biology of several neurological and developmental disorders in which NTE is involved.  相似文献   

9.

Background

The ease of use of CRISPR-Cas9 reprogramming, its high efficacy, and its multiplexing capabilities have brought this technology at the forefront of genome editing techniques. Saccharomyces pastorianus is an aneuploid interspecific hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus that has been domesticated for centuries and is used for the industrial fermentation of lager beer. For yet uncharacterised reasons, this hybrid yeast is far more resilient to genetic alteration than its ancestor S. cerevisiae.

Results

This study reports a new CRISPR-Cas9 method for accurate gene deletion in S. pastorianus. This method combined the Streptococcus pyogenes cas9 gene expressed from either a chromosomal locus or from a mobile genetic element in combination with a plasmid-borne gRNA expression cassette. While the well-established gRNA expression system using the RNA polymerase III dependent SNR52 promoter failed, expression of a gRNA flanked with Hammerhead and Hepatitis Delta Virus ribozymes using the RNA polymerase II dependent TDH3 promoter successfully led to accurate deletion of all four alleles of the SeILV6 gene in strain CBS1483. Furthermore the expression of two ribozyme-flanked gRNAs separated by a 10-bp linker in a polycistronic array successfully led to the simultaneous deletion of SeATF1 and SeATF2, genes located on two separate chromosomes. The expression of this array resulted in the precise deletion of all five and four alleles mediated by homologous recombination in the strains CBS1483 and Weihenstephan 34/70 respectively, demonstrating the multiplexing abilities of this gRNA expression design.

Conclusions

These results firmly established that CRISPR-Cas9 significantly facilitates and accelerates genome editing in S. pastorianus.
  相似文献   

10.

Key message

Citrus tristeza virus encodes a unique protein, p23, with multiple functional roles that include co-option of the cytoplasmic glyceraldehyde 3-phosphate dehydrogenase to facilitate the viral infectious cycle.

Abstract

The genome of citrus tristeza virus (CTV), genus Closterovirus family Closteroviridae, is a single-stranded (+) RNA potentially encoding at least 17 proteins. One (p23), an RNA-binding protein of 209 amino acids with a putative Zn-finger and some basic motifs, displays singular features: (i) it has no homologues in other closteroviruses, (ii) it accumulates mainly in the nucleolus and Cajal bodies, and in plasmodesmata, and (iii) it mediates asymmetric accumulation of CTV RNA strands, intracellular suppression of RNA silencing, induction of some CTV syndromes and enhancement of systemic infection when expressed as a transgene ectopically or in phloem-associated cells in several Citrus spp. Here, a yeast two-hybrid screening of an expression library of Nicotiana benthamiana (a symptomatic experimental host for CTV), identified a transducin/WD40 domain protein and the cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as potential host interactors with p23. Bimolecular fluorescence complementation corroborated the p23-GAPDH interaction in planta and showed that p23 interacts with itself in the nucleolus, Cajal bodies and plasmodesmata, and with GAPDH in the cytoplasm (forming aggregates) and in plasmodesmata. The latter interaction was preserved in a p23 deletion mutant affecting the C-terminal domain, but not in two others affecting the Zn-finger and one internal basic motif. Virus-induced gene silencing of GAPDH mRNA resulted in a decrease of CTV titer as revealed by real-time RT-quantitative PCR and RNA gel-blot hybridization. Thus, like other viruses, CTV seems to co-opt GAPDH, via interaction with p23, to facilitate its infectious cycle.
  相似文献   

11.
Cryptococcus neoformans is a major cause of fungal meningitis in individuals with impaired immunity. Our previous studies have shown that the VPS41 gene plays a critical role in the survival of Cryptococcus neoformans under nitrogen starvation; however, the molecular mechanisms underlying VPS41-mediated starvation response remain to be elucidated. In the present study, we show that, under nitrogen starvation, VPS41 strongly enhanced ICL1 expression in C. neoformans and that overexpression of ICL1 in the vps41 mutant dramatically suppressed its defects in starvation response due to the loss of VPS41 function. Moreover, targeted deletion of ICL1 resulted in a dramatic decline in viability of C. neoformans cells under nitrogen deprivation. Taken together, our data suggest a model in which VPS41 up-regulates ICL1 expression, directly or indirectly, to promote survival of C. neoformans under nitrogen starvation.  相似文献   

12.
Two major nuclear genes, Rf3 and Rf4, are known to be associated with fertility restoration of wild-abortive cytoplasmic male sterility (WA-CMS) in rice. In the present study, through a comparative sequence analysis of the reported putative candidate genes, viz. PPR9-782-(M,I) and PPR762 (for Rf4) and SF21 (for Rf3), among restorer and maintainer lines of rice, we identified significant polymorphism between the two lines and developed a set of PCR-based codominant markers, which could distinguish maintainers from restorers. Among the five markers developed targeting the polymorphisms in PPR9-782-(M,I), the marker RMS-PPR9-1 was observed to show clear polymorphism between the restorer (n = 120) and maintainer lines (n = 44) analyzed. Another codominant marker, named RMS-PPR762 targeting PPR762, displayed a lower efficiency in identification of restorers and maintainers, indicating that PPR9-782-(M,I) is indeed the candidate gene for Rf4. With respect to Rf3, a codominant marker, named RMS-SF21-5 developed targeting SF21, displayed significantly lower efficiency in identification of restorers and non-restorers as compared to the Rf4-specific markers. Validation of these markers in a F2 mapping population segregating for fertility restoration indicated that Rf4 has a major influence on fertility restoration and Rf3 is a minor gene. Further, the functional marker RMS-PPR9-1 was observed to be very useful in identification of impurities in a seed lot of the popular hybrid, DRRH3. Interestingly, when RMS-PPR9-1 and RMS-SF21-5 were considered in conjunction with analysis, near-complete, marker–trait co-segregation was observed, indicating that deployment of the candidate gene-specific markers both Rf4 and Rf3, together, can be helpful in accurate identification of fertility restorer lines and can facilitate targeted transfer of the two restorer genes into elite varieties through marker-assisted breeding.  相似文献   

13.
Chen et al. have proved conclusively that lac repressor and RNA polymerase bind independently to wild type lac DNA in vitro. To explain the lacp s mutation, which causes competitive binding between repressor and polymerase, they suggest that a new promoter site has been created near the lac operator.  相似文献   

14.
15.
16.
Leaf-color mutants are ideal genetic materials for understanding the mechanism of chloroplast development and chlorophyll (Chl) biosynthesis. Here we isolated and identified a new leaf-color mutant of rice, named white-stripe leaf3 (wsl3), from a 60Co-irradiated mutant pool. The wsl3 mutant displayed a visible white-stripe leaf in both young seedlings and flag leaves of mature plant. Chl content in homozygous wsl3 mutant was approximately 47% of that in the wild type. Besides, chloroplast development in the mutant was severely arrested. By a map-based cloning strategy, the wsl3 gene was finely confined to a 50.8 kb region on chromosome 1. Moreover, a 9-bp deletion was identified in the genomic region of LOC_Os01g01920, which encodes an HD (histidine and aspartic acid) domaincontaining protein. Genetic complementation confirmed that LOC_Os01g01920 could recover the lesion of wsl3 mutation. Real-time PCR analyses showed that the expression levels of WSL3 were the highest in young and flag leaves among various tissues, and most of the genes associated with Chl biosynthesis were significantly down-regulated in the wsl3 mutant. Meanwhile, in contrast to many nuclear gene-encoded phage-type RNA polymerase(s) (NEP) transcribed genes were up-regulated, most of plastid-encoded bacterialtype RNA polymerase (PEP) transcribed genes were downregulated. These results demonstrated that the WSL3 gene, as an HD domain-containing protein, is involved in chl biosynthesis and chloroplast development in rice.  相似文献   

17.

Objectives

To deregulate the purine operon of the purine biosynthetic pathway and optimize energy generation of the respiratory chain to improve the yield of guanosine in Bacillus amyloliquefaciens XH7.

Results

The 5′-untranslated region of the purine operon, which contains the guanine-sensing riboswitch, was disrupted. The native promoter Pw in B. amyloliquefaciens XH7 was replaced by different strong promoters. Among the promoter replacement mutants, XH7purE::P41 gave the highest guanosine yield (16.3 g/l), with an increase of 23% compared with B. amyloliquefaciens XH7. The relative expression levels of the purine operon genes (purE, purF, and purD) in the XH7purE::P41 mutant were upregulated. The concentration of inosine monophosphate (IMP), the primary intermediate in the purine pathway, was also significantly increased in the XH7purE::P41 mutant. Combined modification of the low-coupling branched respiratory chains (cytochrome bd oxidase) improved guanosine production synergistically. The final guanosine yield in the XH7purE::P41△cyd mutant increased by 41% to 19 g/l compared with B. amyloliquefaciens XH7.

Conclusion

The combined modification strategy used in this study is a novel approach to improve the production of guanosine in industrial bacterial strains.
  相似文献   

18.
A new deletion allele of the APETALA1 (AP1) gene encoding a type II MADS-box protein with the key role in the initiation of flowering and development of perianth organs has been identified in A. thaliana. The deletion of seven amino acids in the conserved region of the K domain in the ap1-20 mutant considerably delayed flowering and led to a less pronounced abnormality in the corolla development compared to the weak ap1-3 and intermediate ap1-6 alleles. At the same time, a considerable stamen reduction has been revealed in ap1-20 as distinct from ap1-3 and ap1-6 alleles. These data indicate that the K domain of AP1 can be crucial for the initiation of flowering and expression regulation of B-class genes controlling stamen development.  相似文献   

19.
The protective effect of Enterococcus faecium EFAL41 on chicken’s caecum in relation to the TLR (TLR4 and TLR21) activation and production of luminal IgA challenged with Campylobacter jejuni CCM6191 was assessed. The activation of MIF, IFN-β, MD-2 and CD14 was followed-up after bacterial infection. Day-old chicks (40) were divided into four groups (n = 10): control (C), E. faecium AL41 (EFAL41), C. jejuni (CJ) and combined E. faecium AL41+C. jejuni (EFAL41+CJ). Relative mRNA expression of TLR4, TLR21 and CD14 was upregulated in the probiotic strain and infected (combined) group on day 4 and 7 post infection (p.i.). The caecal relative MD-2 mRNA expression was upregulated on day 4 p.i. in the EFAL41+CJ and CJ groups. MIF and IFN-β reached the highest levels in the combined groups on day 7 p.i. The concentration of the sIgA in intestinal flush was upregulated in EFAL41+CJ group on day 4 p.i. The results demonstrated that E. faecium EFAL41 probiotic strain can modulate the TLRs expression and modify the activation of MIF, IFN-β, MD-2 and CD14 molecules in the chickens caecum challenged with C. jejuni CCM 6191. The counts of EFAL41 were sufficient and high, similarly the counts of enterococci in both, caecum and faeces but without reduction of Campylobacter counts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号