首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phagocyte NADPH oxidase generates superoxide anion and downstream reactive oxidant intermediates in response to infectious threat, and is a critical mediator of antimicrobial host defense and inflammatory responses. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are recruited by cancer cells, accumulate locally and systemically in advanced cancer, and can abrogate anti-tumor immunity. Prior studies have implicated the phagocyte NADPH oxidase as being an important component promoting MDSC accumulation and immunosuppression in cancer. We therefore used engineered NADPH oxidase-deficient (p47phox−/−) mice to delineate the role of this enzyme complex in MDSC accumulation and function in a syngeneic mouse model of epithelial ovarian cancer. We found that the presence of NADPH oxidase did not affect tumor progression. The accumulation of MDSCs locally and systemically was similar in tumor-bearing wild-type (WT) and p47phox−/− mice. Although MDSCs from tumor-bearing WT mice had functional NADPH oxidase, the suppressive effect of MDSCs on ex vivo stimulated T cell proliferation was NADPH oxidase-independent. In contrast to other tumor-bearing mouse models, our results show that MDSC accumulation and immunosuppression in syngeneic epithelial ovarian cancer is NADPH oxidase-independent. We speculate that factors inherent to the tumor, tumor microenvironment, or both determine the specific requirement for NADPH oxidase in MDSC accumulation and function.  相似文献   

2.
Waight JD  Hu Q  Miller A  Liu S  Abrams SI 《PloS one》2011,6(11):e27690
Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy.  相似文献   

3.
Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive function. Compared to the level in healthy controls (HC), no elevation of MDSC in chronic hepatitis C (cHEP-C) patients was found, and there was no difference in MDSC based on genotype or viral load (P > 0.25). Moreover, MDSC of cHEP-C patients inhibited CD8 T cell function as efficiently as MDSC of HC did. Since we detected neither quantitative nor qualitative differences in MDSC of cHEP-C patients relative to those of HC, we postulate that MDSC in peripheral blood are most likely not significant regarding immune dysfunction in cHEP-C.  相似文献   

4.
Immunostimulatory CpG oligonucleotides (ODN) activate cells that express TLR9 and have been shown to improve the host's response to tumor Ags. Unfortunately, the immunosuppressive microenvironment that surrounds many cancers inhibits Ag-specific cellular responses and thus interferes with CpG-mediated immunotherapy. Myeloid-derived suppressor cells (MDSC) represent an important constituent of this immunosuppressive milieu. Large numbers of MDSC are present in and near tumor sites where they inhibit the activity of Ag-specific T and NK cells. Current studies indicate that the delivery of CpG ODN directly into the tumor bed reduces the immunosuppressive activity of monocytic (CD11b(+), Ly6G(-), Ly6C(high)) MDSC. Monocytic MDSC express TLR9 and respond to CpG stimulation by 1) losing their ability to suppress T cell function, 2) producing Th1 cytokines, and 3) differentiating into macrophages with tumoricidal capability. These findings provide insight into a novel mechanism by which CpG ODN contribute to tumor regression, and they support intratumoral injection as the optimal route for their delivery.  相似文献   

5.
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that accumulate in response to tumor progression. Compelling data from mouse models and human cancer patients showed that tumor-induced inflammatory mediators induce MDSC differentiation. However, the mechanisms underlying MDSC persistence is largely unknown. Here, we demonstrated that tumor-induced MDSCs exhibit significantly decreased spontaneous apoptosis as compared with myeloid cells with the same phenotypes from tumor-free mice. Consistent with the decreased apoptosis, cell surface Fas receptor decreased significantly in tumor-induced MDSCs. Screening for changes of key apoptosis mediators downstream the Fas receptor revealed that expression levels of IRF8 and Bax are diminished, whereas expression of Bcl-xL is increased in tumor-induced MDSCs. We further determined that IRF8 binds directly to Bax and Bcl-x promoter in primary myeloid cells in vivo, and IRF8-deficient MDSC-like cells also exhibit increased Bcl-xL and decreased Bax expression. Analysis of CD69 and CD25 levels revealed that cytotoxic T lymphocytes (CTLs) are partially activated in tumor-bearing hosts. Strikingly, FasL but not perforin and granzymes were selectively activated in CTLs in the tumor-bearing host. ABT-737 significantly increased the sensitivity of MDSCs to Fas-mediated apoptosis in vitro. More importantly, ABT-737 therapy increased MDSC spontaneous apoptosis and decreased MDSC accumulation in tumor-bearing mice. Our data thus determined that MDSCs use down-regulation of IRF8 to alter Bax and Bcl-xL expression to deregulate the Fas-mediated apoptosis pathway to evade elimination by host CTLs. Therefore, targeting Bcl-xL is potentially effective in suppression of MDSC persistence in cancer therapy.  相似文献   

6.
Myeloid-derived suppressor cells (MDSC) are a heterogenous population of cells comprising myeloid progenitor cells and immature myeloid cells, which have the ability to suppress the effector immune response. In humans, MDSC have not been well characterized owing to the lack of specific markers, although it is possible to broadly classify the MDSC phenotypes described in the literature as being predominantly granulocytic (expressing markers such as CD15, CD66, CD33) or monocytic (expressing CD14). In this study, we set out to perform a direct comparative analysis across both granulocytic and monocytic MDSC subsets in terms of their frequency, absolute number, and function in the peripheral blood of patients with advanced GI cancer. We also set out to determine the optimal method of sample processing given that this is an additional source of heterogeneity. Our findings demonstrate consistent changes across sample processing methods for monocytic MDSC, suggesting that reliance upon cryopreserved PBMC is acceptable. Although we did not see an increase in the population of granulocytic MDSC, these cells were found to be more suppressive than their monocytic counterparts.  相似文献   

7.
The immune system has evolved mechanisms to protect the host from the deleterious effects of inflammation. The generation of immune suppressive cells like myeloid derived suppressor cells (MDSCs) that can counteract T cell responses represents one such strategy. There is an accumulation of immature myeloid cells or MDSCs in bone marrow (BM) and lymphoid organs under pathological conditions such as cancer. MDSCs represent a population of heterogeneous myeloid cells comprising of macrophages, granulocytes and dendritic cells that are at early stages of development. Although, the precise signaling pathways and molecular mechanisms that lead to MDSC generation and expansion in cancer remains to be elucidated. It is widely believed that perturbation of signaling pathways involved during normal hematopoietic and myeloid development under pathological conditions such as tumorogenesis contributes to the development of suppressive myeloid cells. In this review we discuss the role played by key signaling pathways such as PI3K, Ras, Jak/Stat and TGFb during myeloid development and how their deregulation under pathological conditions can lead to the generation of suppressive myeloid cells or MDSCs. Targeting these pathways should help in elucidating mechanisms that lead to the expansion of MDSCs in cancer and point to methods for eliminating these cells from the tumor microenvironment.  相似文献   

8.
《Cytotherapy》2023,25(8):789-797
Myeloid-derived suppressor cells (MDSCs) are naturally occurring leukocytes that develop from immature myeloid cells under inflammatory conditions that were discovered initially in the context of tumor immunity. Because of their robust immune inhibitory activities, there has been growing interest in MDSC-based cellular therapies for transplant tolerance induction. Indeed, various pre-clinical studies have introduced in vivo expansion or adoptive transfer of MDSC as a promising therapeutic strategy leading to a profound extension of allograft survival due to suppression of alloreactive T cells. However, several limitations of cellular therapies using MDSCs remain to be addressed, including their heterogeneous nature and limited expansion capacity. Metabolic reprogramming plays a crucial role for differentiation, proliferation and effector function of immune cells. Notably, recent reports have focused on a distinct metabolic phenotype underlying the differentiation of MDSCs in an inflammatory microenvironment representing a regulatory target. A better understanding of the metabolic reprogramming of MDSCs may thus provide novel insights for MDSC-based treatment approaches in transplantation. In this review, we will summarize recent, interdisciplinary findings on MDSCs metabolic reprogramming, dissect the underlying molecular mechanisms and discuss the relevance for potential treatment approaches in solid-organ transplantation.  相似文献   

9.

Purpose

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immunosuppressive cells that are upregulated in cancer. Little is known about the prevalence and importance of MDSC in pancreas adenocarcinoma (PA).

Experimental design

Peripheral blood, bone marrow, and tumor samples were collected from pancreatic cancer patients, analyzed for MDSC (CD15+CD11b+) by flow cytometry and compared to cancer-free controls. The suppressive capacity of MDSC (CD11b+Gr-1+) and the effectiveness of MDSC depletion were assessed in C57BL/6 mice inoculated with Pan02, a murine PA, and treated with placebo or zoledronic acid, a potent aminobisphosphonate previously shown to target MDSC. The tumor microenvironment was analyzed for MDSC (Gr1+CD11b+), effector T cells, and tumor cytokine levels.

Results

Patients with PA demonstrated increased frequency of MDSC in the bone marrow and peripheral circulation which correlated with disease stage. Normal pancreas tissue showed no MDSC infiltrate, while human tumors avidly recruited MDSC. Murine tumors similarly recruited MDSC that suppressed CD8+ T cells in vitro and accelerated tumor growth in vivo. Treatment with zoledronic acid impaired intratumoral MDSC accumulation resulting in delayed tumor growth rate, prolonged median survival, and increased recruitment of T cells to the tumor. This was associated with a more robust type 1 response with increased levels of IFN-γ and decreased levels of IL-10.

Conclusions

MDSC are important mediators of tumor-induced immunosuppression in pancreatic cancer. Inhibiting MDSC accumulation with zoledronic acid improves the host anti-tumor response in animal studies suggesting that efforts to block MDSC may represent a novel treatment strategy for pancreatic cancer.  相似文献   

10.
Myeloid cells play a crucial role in tumor progression. The most common tumor-infiltrating myeloid cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAMs). These cells promote tumor growth by their inherent immune suppressive activity which is enhanced by their cross-talk. The root extract of the plant Withania somnifera (Ashwagandha) (WRE) has been reported to reduce tumor growth. HPLC analysis identified Withaferin A (WA) as the most abundant constituent of WRE and led us to determine whether the anti-tumor effects of WRE and WA involve modulating MDSC and TAM activity. A prominent effect of MDSC is their production of IL-10 which increases upon cross-talk with macrophages, thus polarizing immunity to a pro-tumor type 2 phenotype. In vitro treatment with WA decreased MDSC production of IL-10 and prevented additional MDSC production of IL-10 generated by MDSC–macrophage cross-talk. Macrophage secretion of IL-6 and TNFα, cytokines that increase MDSC accumulation and function, was also reduced by in vitro treatment with WA. Much of the T-cell suppressive activity of MDSC is due to MDSC production of reactive oxygen species (ROS), and WA significantly reduced MDSC production of ROS through a STAT3-dependent mechanism. In vivo treatment of tumor-bearing mice with WA decreased tumor weight, reduced the quantity of granulocytic MDSC, and reduced the ability of MDSC to suppress antigen-driven activation of CD4+ and CD8+ T cells. Thus, adjunctive treatment with WA reduced myeloid cell-mediated immune suppression, polarized immunity toward a tumor-rejecting type 1 phenotype, and may facilitate the development of anti-tumor immunity.  相似文献   

11.
Chronic inflammation is a complex process that promotes carcinogenesis and tumor progression; however, the mechanisms by which specific inflammatory mediators contribute to tumor growth remain unclear. We and others recently demonstrated that the inflammatory mediators IL-1beta, IL-6, and PGE(2) induce accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing individuals. MDSC impair tumor immunity and thereby facilitate carcinogenesis and tumor progression by inhibiting T and NK cell activation, and by polarizing immunity toward a tumor-promoting type 2 phenotype. We now show that this population of immature myeloid cells induced by a given tumor share a common phenotype regardless of their in vivo location (bone marrow, spleen, blood, or tumor site), and that Gr1(high)CD11b(high)F4/80(-)CD80(+)IL4Ralpha(+/-)Arginase(+) MDSC are induced by the proinflammatory proteins S100A8/A9. S100A8/A9 proteins bind to carboxylated N-glycans expressed on the receptor for advanced glycation end-products and other cell surface glycoprotein receptors on MDSC, signal through the NF-kappaB pathway, and promote MDSC migration. MDSC also synthesize and secrete S100A8/A9 proteins that accumulate in the serum of tumor-bearing mice, and in vivo blocking of S100A8/A9 binding to MDSC using an anti-carboxylated glycan Ab reduces MDSC levels in blood and secondary lymphoid organs in mice with metastatic disease. Therefore, the S100 family of inflammatory mediators serves as an autocrine feedback loop that sustains accumulation of MDSC. Since S100A8/A9 activation of MDSC is through the NF-kappaB signaling pathway, drugs that target this pathway may reduce MDSC levels and be useful therapeutic agents in conjunction with active immunotherapy in cancer patients.  相似文献   

12.
髓系衍生的抑制性细胞(myeloid-derived suppressor cells,MDSCs),是在肿瘤等病理因素的作用下髓系细胞发生分化障碍所产生的不同阶段髓系祖细胞的集合,具有广谱而强大的免疫抑制功能,是免疫系统的重要负性调节组件之一.研究表明:肿瘤微环境中的多种细胞因子或生长因子可通过激活相应的信号通路促进MDSCs扩增及活化,MDSCs进而通过多种机制抑制包括T细胞在内的多种免疫细胞的功能而促进肿瘤个体免疫耐受的发生.临床研究表明:肿瘤患者体内MDSCs的水平与肿瘤临床病程进展密切相关,基于MDSCs的免疫治疗也有望成为肿瘤免疫治疗的新策略.本文主要介绍了肿瘤中MDSCs的表型鉴定、扩增及活化机制、发挥免疫抑制作用的途径及机制、肿瘤中MDSCs的临床意义以及本领域需要解决的问题,以期对MDSCs在肿瘤免疫耐受中的作用进展提供参考.  相似文献   

13.
Myeloid-derived suppressor cells (MDSC) are a group of immature inhibitory cells of bone marrow origin. Human γδ T cells (mainly Vγ9Vδ2 T cells) have emerged as dominant candidates for cancer immunotherapy because of their unique recognition pattern and broad killing activity against tumor cells. Intestinal mucosal intraepithelial lymphocytes are almost exclusively γδ T cells, so it plays an important role in inhibiting the development of colorectal cancer. In this study, we investigated the effects and molecular mechanism of human MDSC on anticolorectal cancer cells activity of Vγ9Vδ2 T cells. Our results suggested that MDSC can reduce the NKG2D expression of Vγ9Vδ2 T cells through direct cell–cell contact, which is associated with membrane-type transforming growth factor-β. In contrast, MDSC can increase Vγ9Vδ2 T cells activation and production of IFN-γ, perforin, Granzyme B through direct cell–cell contact. This may be related to the upregulation of T-bet in Vγ9Vδ2 T cells by MDSC. However, MDSC had a dominant negative regulatory effect on the anticolorectal cancer cells activity of Vγ9Vδ2 T cells. Our study provides a theoretical basis for the immune regulatory function of human MDSC on γδ T cells. This will be conducive to the clinical development of a new antitumor therapy strategy.  相似文献   

14.
Myeloid-derived suppressor cells (MDSCs) potently suppress the anti-tumor immune responses and also orchestrate the tumor microenvironment that favors tumor angiogenesis and metastasis. The molecular networks regulating the accumulation and functions of tumor-expanded MDSCs are largely unknown. In this study, we identified microRNA-494 (miR-494), whose expression was dramatically induced by tumor-derived factors, as an essential player in regulating the accumulation and activity of MDSCs by targeting of phosphatase and tensin homolog (PTEN) and activation of the Akt pathway. TGF-β1 was found to be the main tumor-derived factor responsible for the upregulation of miR-494 in MDSCs. Expression of miR-494 not only enhanced CXCR4-mediated MDSC chemotaxis but also altered the intrinsic apoptotic/survival signal by targeting of PTEN, thus contributing to the accumulation of MDSCs in tumor tissues. Consequently, downregulation of PTEN resulted in increased activity of the Akt pathway and the subsequent upregulation of MMPs for facilitation of tumor cell invasion and metastasis. Knockdown of miR-494 significantly reversed the activity of MDSCs and inhibited the tumor growth and metastasis of 4T1 murine breast cancer in vivo. Collectively, our findings reveal that TGF-β1-induced miR-494 expression in MDSCs plays a critical role in the molecular events governing the accumulation and functions of tumor-expanded MDSCs and might be identified as a potential target in cancer therapy.  相似文献   

15.
Myeloid-derived suppressor cells (MDSC) accumulate in patients and animals with cancer where they mediate systemic immune suppression and obstruct immune-based cancer therapies. We have previously demonstrated that inflammation, which frequently accompanies tumor onset and progression, increases the rate of accumulation and the suppressive potency of MDSC. To determine how inflammation enhances MDSC levels and activity we used mass spectrometry to identify proteins produced by MDSC induced in highly inflammatory settings. Proteomic pathway analysis identified the Fas pathway and caspase network proteins, leading us to hypothesize that inflammation enhances MDSC accumulation by increasing MDSC resistance to Fas-mediated apoptosis. The MS findings were validated and extended by biological studies. Using activated caspase 3 and caspase 8 as indicators of apoptosis, flow cytometry, confocal microscopy, and Western blot analyses demonstrated that inflammation-induced MDSC treated with a Fas agonist contain lower levels of activated caspases, suggesting that inflammation enhances resistance to Fas-mediated apoptosis. Resistance to Fas-mediated apoptosis was confirmed by viability studies of MDSC treated with a Fas agonist. These results suggest that an inflammatory environment, which is frequently present in tumor-bearing individuals, protects MDSC against extrinsic-induced apoptosis resulting in MDSC with a longer in vivo half-life, and may explain why MDSC accumulate more rapidly and to higher levels in inflammatory settings.  相似文献   

16.
Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of immature myeloid cells whose numbers dramatically increase in chronic and acute inflammatory diseases, including cancer, autoimmune disease, trauma, burns and sepsis. Studied originally in cancer, these cells are potently immunosuppressive, particularly in their ability to suppress antigen-specific CD8(+) and CD4(+) T-cell activation through multiple mechanisms, including depletion of extracellular arginine, nitrosylation of regulatory proteins, and secretion of interleukin 10, prostaglandins and other immunosuppressive mediators. However, additional properties of these cells, including increased reactive oxygen species and inflammatory cytokine production, as well as their universal expansion in nearly all inflammatory conditions, suggest that MDSCs may be more of a normal component of the inflammatory response ("emergency myelopoiesis") than simply a pathological response to a growing tumor. Recent evocative data even suggest that the expansion of MDSCs in acute inflammatory processes, such as burns and sepsis, plays a beneficial role in the host by increasing immune surveillance and innate immune responses. Although clinical efforts are currently underway to suppress MDSC numbers and function in cancer to improve antineoplastic responses, such approaches may not be desirable or beneficial in other clinical conditions in which immune surveillance and antimicrobial activities are required.  相似文献   

17.
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of cells that play a critical role in tumor associated immune suppression. In an attempt to identify a specific subset of MDSC primarily responsible for immunosuppressive features of these cells, 10 different tumor models were investigated. All models showed variable but significant increase in the population of MDSC. Variability of MDSC expansion in vivo matched closely the effect of tumor cell condition medium in vitro. MDSC consists of two major subsets of Ly6G(+)Ly6C(low) granulocytic and Ly6G(-)Ly6C(high) monocytic cells. Granulocytic MDSC have increased level of reactive oxygen species and undetectable level of NO whereas monocytic MDSC had increased level of NO but undetectable levels of reactive oxygen species. However, their suppressive activity per cell basis was comparable. Almost all tumor models demonstrated a preferential expansion of granulocytic subset of MDSC. We performed a phenotypical and functional analysis of several surface molecules previously suggested to be involved in MDSC-mediated suppression of T cells: CD115, CD124, CD80, PD-L1, and PD-L2. Although substantial proportion of MDSC expressed those molecules no differences in the level of their expression or the proportion, positive cells were found between MDSC and cells from tumor-free mice that lack immune suppressive activity. The level of MDSC-mediated T cell suppression did not depend on the expression of these molecules. These data indicate that suppressive features of MDSC is caused not by expansion of a specific subset but more likely represent a functional state of these cells.  相似文献   

18.
Myeloid-derived suppressor cells (MDSC) are important regulators of the immune system and key players in tumor-induced suppression of T-cell responses. CD14+HLA-DR-/low MDSC have been detected in a great number of malignancies, including melanoma. MDSC are known to be impaired in their ability to differentiate along the myeloid lineage, e.g., into dendritic cells (DC). This is a concern for utilization of monocyte-derived DC for vaccination of patients with melanoma or other cancers exhibiting accumulation of CD14+ MDSC. When producing DC according to standard operating procedures of two currently ongoing clinical trials, we found that MDSC co-purified with monocytes isolated by elutriation. MDSC frequencies did not affect yield or viability of the produced DC, but induced a dose-dependent decrease in DC maturation, ability to take up antigen, migrate and induce T-cell IFNγ production. Changes in DC characteristics were most notable when 'pathological' frequencies of >50% CD14+HLA-DR- cells were present in the starting culture. The impaired DC quality could not be explained by altered cytokine production or increased oxidative stress in the cultures. Tracking of HLA-DR- cells throughout the culture period revealed that the observed changes were partially due to the impaired maturation and functionality of the originally HLA-DR- population, but also to their negative effects on HLA-DR+ cells. In conclusion, MDSC could be induced to differentiate into DC but, due to the impairment of overall DC vaccine quality when >50% HLA-DR- cells were present in the starting culture, their removal could be advisable.  相似文献   

19.
S100A8/A9 activate key genes and pathways in colon tumor progression   总被引:1,自引:0,他引:1  
The tumor microenvironment plays an important role in modulating tumor progression. Earlier, we showed that S100A8/A9 proteins secreted by myeloid-derived suppressor cells (MDSC) present within tumors and metastatic sites promote an autocrine pathway for accumulation of MDSC. In a mouse model of colitis-associated colon cancer, we also showed that S100A8/A9-positive cells accumulate in all regions of dysplasia and adenoma. Here we present evidence that S100A8/A9 interact with RAGE and carboxylated glycans on colon tumor cells and promote activation of MAPK and NF-κB signaling pathways. Comparison of gene expression profiles of S100A8/A9-activated colon tumor cells versus unactivated cells led us to identify a small cohort of genes upregulated in activated cells, including Cxcl1, Ccl5 and Ccl7, Slc39a10, Lcn2, Zc3h12a, Enpp2, and other genes, whose products promote leukocyte recruitment, angiogenesis, tumor migration, wound healing, and formation of premetastatic niches in distal metastatic organs. Consistent with this observation, in murine colon tumor models we found that chemokines were upregulated in tumors, and elevated in sera of tumor-bearing wild-type mice. Mice lacking S100A9 showed significantly reduced tumor incidence, growth and metastasis, reduced chemokine levels, and reduced infiltration of CD11b(+)Gr1(+) cells within tumors and premetastatic organs. Studies using bone marrow chimeric mice revealed that S100A8/A9 expression on myeloid cells is essential for development of colon tumors. Our results thus reveal a novel role for myeloid-derived S100A8/A9 in activating specific downstream genes associated with tumorigenesis and in promoting tumor growth and metastasis.  相似文献   

20.
A better understanding of molecular signaling between myeloid‐derived suppressor cells (MDSC), tumor cells, T‐cells, and inflammatory mediators is expected to contribute to more effective cancer immunotherapies. We focus on plasma membrane associated proteins, which are critical in signaling and intercellular communication, and investigate changes in their abundance in MDSC of tumor‐bearing mice subject to heightened versus basal inflammatory conditions. Using spectral counting, we observed statistically significant differential abundances for 35 proteins associated with the plasma membrane, most notably the pro‐inflammatory proteins S100A8 and S100A9 which induce MDSC and promote their migration. We also tested whether the peptides associated with canonical pathways showed a statistically significant increase or decrease subject to heightened versus basal inflammatory conditions. Collectively, these studies used bottom‐up proteomic analysis to identify plasma membrane associated pro‐inflammatory molecules and pathways that drive MDSC accumulation, migration, and suppressive potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号