首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boronated derivatives of porphyrins are studied extensively as promising compounds for boron-neutron capture therapy and photodynamic therapy. Understanding of the mechanism of their permeation across cell membranes is a key step in screening for the most efficient compounds. In the present work, we studied the ability of boronated derivatives of chlorin e 6 and porphyrins, which are mono-, di-, and tetra-anions, to permeate through planar bilayer lipid membranes (BLM). The translocation rate constants through the hydrophobic part of the lipid bilayer were estimated for monocarborane and its conjugate with chlorin e 6 by the method of electrical current relaxation. They were similar, 6.6 and 6.8 sec−1, respectively. Conjugates of porphyrins carrying two and four carborane groups were shown to permeate efficiently through a BLM although they carry two charges and four charges, respectively. The rate of permeation of the tetraanion estimated by the BLM current had superlinear dependence on the BLM voltage. Because the resting potential of most mammalian cells is negative inside, it can be concluded that the presence of negatively-charged boronated groups in compounds should hinder the accumulation of the porphyrins in cells.  相似文献   

2.
3.
BioDeNO x process, which combines the advantages of the chemical absorption and biological reduction processes, is regarded as a promising candidate for NO removal from the flue gas. In the BioDeNO x , N2O was accumulated in the process of the biological reduction of FeII(EDTA)-NO. In this work, the pathway of the FeII(EDTA)-NO reduction was investigated and a mathematic model was developed to evaluate and predict the accumulation of N2O. Furthermore, parametric tests such as the effects of the C/N ratio (molar ratio of carbon/nitrogen), electron donor, and sulfite concentrations on N2O accumulation were investigated. Experimental results revealed that N2O accumulation was inhibited with a high C/N ratio (2.4), sufficient electron donor, and a low sulfite concentration. In addition, compared with the inorganic electron donor (FeII(EDTA)), the organic electron donor (glucose) was beneficial for microorganism metabolism and N2O accumulation inhibition. This work will provide significant insight into the inhibition of N2O accumulation during the operation of BioDeNO x and advance this novel process for the industrial application.  相似文献   

4.
5.
Results are presented from the study of the electrical and optical characteristics of a transverse RF discharge in Xe/Cl2 mixtures at pressures of p≤400 Pa. The working mixture was excited by a modulated RF discharge (f=1.76 MHz) with a transverse electrode configuration (L≤17 cm). The emission spectrum in the spectral range of 210–600 nm and the waveforms of the discharge current, discharge voltage, and plasma emission intensity were investigated. The UV emission power from the discharge was studied as a function of the pressure and composition of a Xe/Cl2 mixture. It is shown that a discharge in a xenon-chlorine mixture acts as planar excimer-halogen lamp operating in the spectral range of 220–450 nm, which contains a system of overlapping XeCl(D, B-X; B, C-A) and Cl2(D′-A′) bands. Transverse RF discharges in Xe/Cl2 mixtures can be used to create a wideband lamp with two 50-cm2 planar apertures and the low circulation rate of the working mixture.  相似文献   

6.
Tyrosine derivatives labeled with a short-lived fluorine-18 isotope (T 1/2 110 min), namely 2-[18F]fluoro-L-tyrosine (FTYR) and O-(2′-[18F]fluoroethyl)-L-tyrosine (FET), promising radiopharmaceuticals (RPs) for positron emission tomography (PET), were obtained by asymmetric syntheses. Accumulation of FTYR and FET in the rat tumor “Glioma 35 rats tumor” and in abscesses induced in Wistar rats muscles was studied and compared with that of a well-known glycolysis radiotracer 2-[18F]fluoro-2-deoxy-D-glucose (FDG). It was shown that the relative accumulation indices of amino acid RPs were considerably lower than those of FDG. At the same time, tumor/muscle ratios were high enough (2.9 for FET and 3.9 for FTYR 120 min after injection) for reliable tumor visualization. The data obtained indicated a possibility in principle to use FTYR and FET for differentiated PET diagnostics of brain tumors and inflammation lesions. Of the tyrosine derivatives studied, FET seems to be the most promising agent due to a simple and easily automated method of preparation based on direct nucleophilic substitution of the leaving tosyloxy group of an enantiomerically pure Ni-(S)-BPS-(S)-Tyr(CH2CH2OTs) precursor by an activated [18F]fluoride.  相似文献   

7.
Pistachio is a tree of the arid and semi-arid regions where salinity and boron (B) toxicity can be major environmental stresses. In this study, individual and combined effects of different concentrations of NaCl (0, 800, 1600, 2400 and 3200 mg kg?1 soil) and B (0, 2.5, 5.0, 10.0 and 20.0 mg kg?1 soil) were studied on growth, gas-exchange and mineral composition of pistachio seedlings for a duration of 120 days. Excess amounts of salinity (> 1600 mg NaCl kg?1 soil) and B (20.0 mg kg?1 soil) significantly reduced the plant growth and CO2 assimilation, which was associated with accumulation of Na, Cl and B in leaves. There was also a decline in cell membrane stability index (MSI). Reduced stomatal conductance (g s) was the primary cause of inhibition of photosynthesis rate (P N) under mild to moderate salinity. However, under severe salt stress and B toxicity, non-stomatal effects contributed to the inhibition of CO2 assimilation in addition to the decline in g s value. Application of 5.0–10.0 mg B kg?1 soil significantly improved the plant growth and P N and also recovered the MSI as countermeasures against salt stress. These observations were related to the role of B in cell membrane structure and functioning which reduced the concentration of toxic ions in the leaves. However, cell membrane damages and chlorophyll loss in plants affected by salt were observed to be exacerbated when excess amounts of B were present. In conclusion, the results revealed that optimizing the B nutrition can improve the performance of pistachio seedlings under salt stress, and NaCl also showed a mitigating effect on B toxicity if its concentration in the soil is kept under the plant salt tolerance threshold.  相似文献   

8.
A magnetophoretic harvesting agent, a polypyrrole/Fe3O4 magnetic nanocomposite, is proposed as a cost and energy efficient alternative to recover biomass of the microalgae Botryococcus braunii, Chlorella protothecoides, and Chlorella vulgaris from their culture media. The maximal recovery efficiency reached almost 99 % for B. braunii, 92.4 % for C. protothecoides, and 90.8 % for C. vulgaris. The maximum adsorption capacity (Q 0) of the magnetic nanocomposite for B. braunii (63.49 mg dry biomass mg?1 PPy/Fe3O4) was higher than that for C. protothecoides (43.91 mg dry biomass mg?1 PPy/Fe3O4) and C. vulgaris (39.98 mg dry biomass mg?1 PPy/Fe3O4). The highest harvesting efficiency for all the studied microalgae were at pH 10.0, and measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that polypyrrole/Fe3O4 can be a promising flocculant due to its high efficacy, low dose requirements, short settling time, its integrity with cells, and with great potential for saving energy because of its recyclability.  相似文献   

9.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

10.
Kinetics of the reduction of the hemes in cytochrome c oxidase in the presence of high concentration of ruthenium(III)hexaammine chloride was examined using a stopped-flow spectrophotometer. Upon mixing of the oxidized enzyme with dithionite and Ru(NH3) 6 3+ , three well-resolved phases were observed: heme a reduction reaching completion within a few milliseconds is followed by two slow phases of heme a 3 reduction. The difference spectrum of heme a 3 reduction in the visible region is characterized by a maximum at ~612 nm, rather than at 603 nm as was believed earlier. It is shown that in the case of bovine heart cytochrome c oxidase containing a special cation-binding site in which reversible binding of calcium ion occurs, heme a 3 reduction is slowed down by low concentrations of Ca2+. The effect is absent in the case of the bacterial cytochrome oxidase in which the cation-binding site contains a tightly bound Ca2+ ion. The data corroborate the inhibition of the cytochrome oxidase enzymatic activity by Ca2+ ions discovered earlier and indicate that the cation affects intramolecular electron transfer.  相似文献   

11.
In this work, the structural, compositional, optical, and dielectric properties of Ga2S3 thin films are investigated by means of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray analysis, and ultraviolet—visible light spectrophotometry. The Ga2S3 thin films which exhibited amorphous nature in its as grown form are observed to be generally composed of 40.7 % Ga and 59.3 % S atomic content. The direct allowed transitions optical energy bandgap is found to be 2.96 eV. On the other hand, the modeling of the dielectric spectra in the frequency range of 270–1,000 THz, using the modified Drude-Lorentz model for electron-plasmon interactions revealed the electrons scattering time as 1.8 (fs), the electron bounded plasma frequency as ~0.76–0.94 (GHz) and the reduced resonant frequency as 2.20–4.60 ×1015 (Hz) in the range of 270–753 THz. The corresponding drift mobility of electrons to the terahertz oscillating incident electric field is found to be 7.91 (cm 2/Vs). The values are promising as they nominate the Ga2S3 thin films as effective candidates in thin-film transistor and gas sensing technologies.  相似文献   

12.

Aims

Despite extensive studies on effects of elevated CO2 concentration ([CO2]e) on plant growth, few studies have investigated the responses of native grassland plant species to [CO2]e in terms of nutrient acquisition.

Methods

The effects of [CO2]e (769 ± 23 ppm) on Artemisia frigida and Stipa krylovii, two dominant species in Inner Mongolia steppe were investigated by growing them for 7 weeks in Open-Top Chambers (OTC).

Results

Exposure to [CO2]e enhanced shoot and root growth of A. frigida and S. krylovii. Elevated [CO2] increased photosynthetic rates (Pn) by 34 % in A. frigida but decreased Pn by 52 % in S. krylovii. Moreover, root-secreted acid phosphatase activity in A. frigida was stimulated by [CO2]e, while exudation of malate from roots of S. krylovii was suppressed by [CO2]e. Exposure to [CO2]e led to a decrease in P concentration in shoots and roots of A. frigida and S. krylovii, but total amount of P accumulated in shoots and roots of both species was increased by [CO2]e.

Conclusions

The two dominant species in temperate steppes differed in their responses to [CO2]e, such that A. frigida was more adapted to [CO2]e than S. krylovii under low availability of soil P.
  相似文献   

13.
Designing and synthesizing novel electron-donor polymers with the high photovoltaic performances has remained a major challenge and hot issue in organic electronics. In this work, the exciton-dissociation (k dis ) and charge-recombination (k rec ) rates for the PC61BM-PTDPPSe system as a promising polymer-based solar cell candidate have been theoretically investigated by means of density functional theory (DFT) calculations coupled with the non-adiabatic Marcus charge transfer model. Moreover, a series of regression analysis has been carried out to explore the rational structure–property relationship. Results reveal that the PC61BM-PTDPPSe system possesses the large open-circuit voltage (0.77 V), middle-sized exiton binding energy (0.457 eV), and relatively small reorganization energies in exciton-dissociation (0.273 eV) and charge-recombination (0.530 eV) processes. With the Marcus model, the k dis , k rec , and the radiative decay rate (k s ), are estimated to be 3.167×1011 s?1, 3.767×1010 s?1, and 7.930×108 s?1 respectively in the PC61BM-PTDPPSe interface. Comparably, the k dis is as 1~3 orders of magnitude larger than the k rec and the k s , which indicates a fast and efficient photoinduced exciton-dissociation process in the PC61BM-PTDPPSe interface.
Graphical Abstract PTDPPSe is predicted to be a promising electron donor polymer, and the PC61BM-PTDPPSe system is worthy of further device research by experiments.
  相似文献   

14.
Natural bond orbital (NBO) analyses and dissected nucleus-independent chemical shifts (NICS π z z ) were computed to evaluate the bonding (bond type, electron occupation, hybridization) and aromatic character of the three lowest-lying Si2CH2 (1-Si, 2-Si, 3-Si) and Ge2CH2 (1-Ge, 2-Ge, 3-Ge) isomers. While their carbon C3H2 analogs favor classical alkene, allene, and alkyne type bonding, these Si and Ge derivatives are more polarizable and can favor “highly electron delocalized”? and “non-classical”? structures. The lowest energy Si 2CH2 and Ge 2CH2 isomers, 1-Si and 1-Ge, exhibit two sets of 3–center 2–electron (3c-2e) bonding; a π-3c-2e bond involving the heavy atoms (C–Si–Si and C–Ge–Ge), and a σ-3c-2e bond (Si–H–Si, Ge–H–Ge). Both 3-Si and 3-Ge exhibit π and σ-3c-2e bonding involving a planar tetracoordinated carbon (ptC) center. Despite their highly electron delocalized nature, all of the Si2CH2 and Ge2CH2 isomers considered display only modest two π electron aromatic character (NICS(0) π z z =--6.2 to –8.9 ppm, computed at the heavy atom ring center) compared to the cyclic-C 3H2 (–13.3 ppm).
Graphical Abstract The three lowest Si2CH2 and Ge2CH2 isomers.
  相似文献   

15.
Results are presented from measurements of the temperature characteristics of subsonic CO2 plasma flows generated by a 100-kW induction plasmatron at the Institute for Problems of Mechanics, Russian Academy of Sciences. The atomic excitation temperature T a and the population temperature T e of the electronic states of C2 molecules (both averaged over the jet diameter) were measured from the absolute intensities of the atomic spectral lines and the spectrum of C2 molecules in different generation regimes at gas pressures of 25–140 hPa and anode supply powers of 29–72 kW. The longitudinal and radial profiles of the temperatures were determined for some of these regimes and compared to those obtained from numerical calculations of equilibrium induction plasma flows in the discharge channel. For some generation regimes, the dependences of the averaged (over the line of sight) rotational and vibrational temperatures (T r and T v) on the discharge parameters, as well as the radial profiles of these temperatures, were determined from the best fit of the measured and calculated spectra of C2 molecules (Swan bands). The self-absorption of molecular emission was observed at sufficiently high temperatures and gas pressures, and its influence on the measured values of the molecular temperatures T e, T v, and T r was examined.  相似文献   

16.
The production of excited xenon iodides and iodine dimers in the plasma of a longitudinal dc glow discharge is investigated. The discharge was ignited in iodine vapor and Xe/I2 mixtures at xenon pressures of P(Xe)=0.1–1.5 kPa and deposited powers of 10–100 W. The current-voltage characteristics of a glow discharge, the plasma emission spectra in the spectral range of 200–650 nm, and the intensities of spectral lines and molecular bands are studied as functions of the deposited power and the xenon partial pressure in a Xe/I2 mixture. It is found that the discharge plasma emits within the spectral range of 206–343 nm, which includes the 206-nm resonant line of atomic iodine and the XeI(B-X) 253-nm and I2(B-X) 343-nm molecular bands. The power deposited in the plasma and the xenon pressure P(Xe) are optimized to achieve the maximum UV emission intensity. The 7-W total UV power emitted from the entire surface of the cylindrical discharge tube is achieved with an efficiency of ≤5%.  相似文献   

17.
18.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

19.

Objectives

To prove the possibility of efficient starch photofermentation in co-culture of heterotrophic and phototrophic bacteria over prolonged period.

Results

Repeated batch photofermentation of starch was demonstrated in co-culture Clostridium butyricum and Rhodobacter sphaeroides under microaerobic conditions. It continued 15 months without addition of new inoculum or pH regulation when using 4–5 g starch l?1 and 0.04 g yeast extract l?1. The complete degradation of starch without volatile fatty acids accumulation was shown in this co-culture. The average H2 yield of 5.2 mol/mol glucose was much higher than that in Clostridium monoculture. The species composition of co-culture was studied by q-PCR assay. The concentration of Clostridium cells in prolonged co-culture was lower than in monoculture and even in a single batch co-culture. This means that Clostridia growth was significantly limited whereas starch hydrolysis still took place.

Conclusion

The prolonged repeated batch photofermentation of starch by co-culture C. butyricum and R. sphaeroides provided efficient H2 production without accumulation of organic acids under conditions of Clostridia limitation.
  相似文献   

20.
Emerging evidence suggests that probiotic therapy can play a role in the prevention and management of oral inflammatory diseases through immunomodulation and down-regulation of the inflammatory cascade. The aim of this in vitro study was to investigate the viability of human gingival fibroblasts (HGF) and its production of prostaglandin E2 (PGE2), when exposed to supernatants of two mixed Lactobacillus reuteri strains (ATCC PTA 5289 and DSM 17938). The experiments were conducted in the presence and absence of the pro-inflammatory cytokine IL-1β. L. reuteri strains were grown and the bacterial supernatant was collected. The cell-free supernatant was diluted to concentrations equivalent to the ones produced by 0.5 to 5.0 × 107 CFU/mL bacteria. Cell viability was assessed with the MTT colorimetric assay and the amount of PGE2 in the cell culture medium was determined using the monoclonal enzyme immune assay kits. Our findings showed that none of the L. reuteri supernatants were cytotoxic or affected the viability of HGF. The most concentrated bacterial supernatant stimulated the production of PGE2 by the gingival cells in a significant way in the presence of IL-1β (p < 0.05), suggesting that bacterial products secreted from L. reuteri might play a role in the resolution of inflammation in HGF. Thus, our findings justify further investigations on the influence of probiotic bacteria on gingival inflammatory reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号