首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
《Theriogenology》2008,69(9):1240-1250
The mixed success of equine artificial insemination programs using chilled and frozen-thawed semen is most likely associated with the variable response of the sperm cell to the preservation process and the fact that stallions are not selected on the basis of reproductive performance. We propose that the traditional indicators of sperm viability do not fully account for male factor infertility in the stallion and that knowledge of sperm DNA damage in the original semen sample and during semen processing may provide a more informed explanation of an individual stallion's reproductive potential. This study reports on the validation of a sperm DNA fragmentation test based on the sperm chromatin dispersion test (SCD) for stallion spermatozoa and on its application to semen that was chilled (4 °C; n = 10) or frozen-thawed (n = 13). Semen samples were collected by artificial vagina and the proportion of sperm with fragmented DNA determined. Seminal plasma was then removed by centrifugation and the sperm pellet re-suspended in commercial extenders prior to being chilled or cryopreserved using standard industry protocols. Chilled semen was cooled slowly to 4 °C and stored for 1 h before commencing the analysis; cryopreserved semen was thawed and immediately analyzed. Following chilling or cryopreservation, the semen samples were incubated at 37 °C and analyzed for SCD after 0, 4, 6, 24 and 48 h storage. The results of this investigation revealed that there was no significant difference in the sperm DNA fragmentation index (sDFI) of sperm evaluated initially after collection compared to those tested immediately after chilling or cryopreservation. However, within 1 h of incubation at 37 °C, both chilled and frozen-thawed spermatozoa showed a significant increase in the proportion of sDFI; after 6 h the sDFI had increased to over 50% and by 48 h, almost 100% of the sperm showed DNA damage. While the sDFI of individual stallions at equivalent times of incubation was variable, an analysis of the rate of change of sDFI revealed no difference between stallions or the way in which the semen was preserved. In terms of sperm DNA fragmentation dynamics, the highest intensity of sperm DNA damage occurred in the first 6 h of incubation. We suggest that the SCD test can be used as a routine assessment tool for the development and refinement of preservation protocols designed to reduce stallion sperm DNA damage.  相似文献   

2.
《Reproductive biology》2019,19(3):255-260
Several studies on semen physiology and sperm fertilizing capacity have shown a beneficial effect of antioxidants. Procyanidine is a natural antioxidant, more efficient compared with vitamin C and E, with many applications in the food, agriculture, pharmaceutical and cosmetic industry. Thus, we tested whether the addition of procyanidine to the semen of infertile men has a beneficial effect on spermatozoa during their in vitro incubation and during the cryopreservation process. Semen samples of 25 infertile men were divided in to two aliquots, in which procyanidine was added or not. Semen analysis, measurement of sperm DNA fragmentation index (DFI) and measurement of reactive oxygen species (ROS) were performed 3 h after incubation at 37 °C and after sperm cryopreservation and thawing. In-vitro addition of procyanidine to semen of infertile men resulted in a lesser decrease in progressive motility [−4 (−31:+6) vs. −6 (−31:+5), p < 0.001] and total motility [−5 (−29:+3) vs. −9 (−32:+2), p < 0.001] after 3 h of incubation compared with no addition of procyanidine. Sperm morphology was decreased only in the control group after 3 h of incubation [2 (0:+6) vs. 1 (0:+4), p = 0.009]. Furthermore, a larger increase in sperm DFI was observed in the control compared with the procyanidine group [9 (−7:+27) vs. 3 (−3:+18), p = 0.005] after thawing of cryopreserved semen samples. In conclusion, in-vitro addition of procyanidine to the semen of infertile men exerts a protective effect on progressive motility during handling and after 3 h of incubation as well as on sperm DFI during the process of cryopreservation.  相似文献   

3.
Dynamics of sperm DNA fragmentation in domestic animals II. The stallion   总被引:2,自引:1,他引:1  
The mixed success of equine artificial insemination programs using chilled and frozen-thawed semen is most likely associated with the variable response of the sperm cell to the preservation process and the fact that stallions are not selected on the basis of reproductive performance. We propose that the traditional indicators of sperm viability do not fully account for male factor infertility in the stallion and that knowledge of sperm DNA damage in the original semen sample and during semen processing may provide a more informed explanation of an individual stallion's reproductive potential. This study reports on the validation of a sperm DNA fragmentation test based on the sperm chromatin dispersion test (SCD) for stallion spermatozoa and on its application to semen that was chilled (4 degrees C; n=10) or frozen-thawed (n=13). Semen samples were collected by artificial vagina and the proportion of sperm with fragmented DNA determined. Seminal plasma was then removed by centrifugation and the sperm pellet re-suspended in commercial extenders prior to being chilled or cryopreserved using standard industry protocols. Chilled semen was cooled slowly to 4 degrees C and stored for 1h before commencing the analysis; cryopreserved semen was thawed and immediately analyzed. Following chilling or cryopreservation, the semen samples were incubated at 37 degrees C and analyzed for SCD after 0, 4, 6, 24 and 48 h storage. The results of this investigation revealed that there was no significant difference in the sperm DNA fragmentation index (sDFI) of sperm evaluated initially after collection compared to those tested immediately after chilling or cryopreservation. However, within 1h of incubation at 37 degrees C, both chilled and frozen-thawed spermatozoa showed a significant increase in the proportion of sDFI; after 6h the sDFI had increased to over 50% and by 48 h, almost 100% of the sperm showed DNA damage. While the sDFI of individual stallions at equivalent times of incubation was variable, an analysis of the rate of change of sDFI revealed no difference between stallions or the way in which the semen was preserved. In terms of sperm DNA fragmentation dynamics, the highest intensity of sperm DNA damage occurred in the first 6h of incubation. We suggest that the SCD test can be used as a routine assessment tool for the development and refinement of preservation protocols designed to reduce stallion sperm DNA damage.  相似文献   

4.
The purpose of this study was to investigate the occurrence of sperm DNA fragmentation in Asian elephant (Elephas maximus) spermatozoa at various processing stages before and after cryopreservation. Five semen samples from four elephants were assessed at four different stages during processing; after (1) collection and reextension in TEST-egg yolk; (2) cooling to 5 °C; (3) equilibration for 1 h with glycerol; (4) thawing. An experimental approach was adopted that allowed comparisons of DNA fragmentation rates developed after the various processing stages. For this, spermatozoa were incubated in TEST-yolk media at 37 °C for 0, 4, 8, 24 and 48 h, and sperm DNA fragmentation rates were estimated using an elephant-specific Halosperm procedure. Incubation at 37 °C induced a rapid increase in DNA fragmentation, and significant differences between males were observed. The overall rate of increase over 4 h was estimated at about 5% per hour, and no significant changes to this rate were observed at the different processing stages, even, including the post-thaw samples. As semen quality of the five ejaculates was relatively poor, the basic semen parameter data were compared with nine different samples collected 11 mo earlier to see whether the tested samples were atypical or representative of the population, As there was no significant difference between the two sets of samples, it is believed that the samples tested for DNA stability were not unusually sensitive. These results suggest that Asian elephant spermatozoa are more susceptible to DNA fragmentation than spermatozoa of other mammals.  相似文献   

5.
The objective of this study was to compare the effects of different concentrations of two different cryoprotectants (glycerol, G and ethylene glycol, EG) and trehalose (T), added to the semen extender, on post-thaw ram sperm parameters. Ejaculates, collected from 6 Merino rams, were pooled and evaluated at 37 °C. The pooled samples were divided into six equal aliquots, and diluted in Tris-based extenders containing 5% G, 3% G + 60 Mm T, 1.5% G + 100 Mm T, 5% EG, 3% EG + 60 mM T, and 1.5% EG + 100 Mm T. Subsequently, the samples were cooled to 5 °C, frozen in 0.25-ml French straws, and stored in liquid nitrogen (LN2). Frozen samples were thawed individually, at 37 °C for 25 s in a water bath, for evaluation. Sperm motility was assessed using a phase-contrast microscope with a warm stage maintained at 37 °C. Acrosome integrity (FITC/PNA-PI), sperm viability (SYBR-14/PI), mitochondrial activity (JC-1/PI), DNA damage (COMET assay) and DNA fragmentation (TUNEL test) were determined. The group of samples diluted in an extender containing 5% of glycerol (Group 5% G) displayed higher percentages of subjective motility, viability and mitochondrial activity of sperm, compared to the other groups (P < 0.05). On the other hand, Group 3% G + 60 mM T yielded the second-best results for subjective motility, viability and mitochondrial activity of sperm, when compared to the other groups. The post-thaw sperm parameters of Group 3% G + 60 Mm T did not show any statistically significant difference from those of Group 5% G. There were no statistically significant differences between the groups for acrosome integrity (P > 0.05).The results of the COMET assay showed that the use of low concentrations of cryoprotectants in combination with trehalose decreased sperm DNA damage. Accordingly, Group 1.5% G + 100 mM T and Group 3% EG + 60 mM T benefited from a significantly stronger cryoprotective effect on DNA integrity, in comparison to Group 5% G (P < 0.05). According to the results of the TUNEL test, the combined use of low concentrations of cryoprotectants with trehalose decreased sperm DNA damage, when compared to the use of 5% glycerol, but this difference was statistically insignificant (P > 0.05).In conclusion, G and EG concentrations can be reduced by adding various amounts of T (60 mM, 100 mM) to the semen extender. The addition of 5% of glycerol and 3% G + 60 mM T to the semen extender did not yield statistically different post-thaw sperm parameters, when compared for protection against cryoinjury. Post-thaw sperm parameters can be improved by the supplementation of the semen extender with 3% G + 60 mM T. Thus, we recommend the use of freezing extenders containing low cryoprotectant concentrations (3% G) combined with trehalose to avoid the high level of toxic and osmotic damage caused by 5% G.  相似文献   

6.
The sperm chromatin dispersion (SCD) test is a new technique that allows assessment of sperm DNA fragmentation (SDF) in different species. The application of this technique, like other techniques, is restricted to the laboratory. Our investigation was aimed at exploring the possibilities of extending SCD methodology for use in the field, where electric powered facilities such as freezers, microscopes or heaters are not available. Our results showed that SCD methodology, with minor modifications to the standard protocol, can be performed readily in the field, offering reliable information about SDF. An Light Emitting Diode (LED)-equipped microscope attached to a laptop, a gas heater and a CO2 spray for cooling are sufficient to assess the quality of sperm DNA. The results obtained after assessing 10 different semen samples under different conditions (30° C in the laboratory and at 17° C and 4° C in the field) showed that except after processing the slides at 4° C, the results of SDF in different animals showed no significant differences. With the modifications suggested here, the SCD technique can be used to assess SDF in the wild. In particular, the DNA quality of spermatozoa obtained from animals post mortem can be assessed in the field.  相似文献   

7.
Sperm DNA fragmentation (SDF) is not a static seminal parameter, since the longevity of sperm DNA decreases progressively with time following ejaculation or thawing. While the dynamics of SDF is a species-specific characteristic, in the case of humans, there is still significant variation within patients. To evaluate the suitability of the dynamic SDF assay to assess the adverse effects of agents that cause genetic damage, fresh semen samples from different donors were exposed in vitro to (1) increasing acute doses of ionizing radiation, (2) elevated temperature (41°C and 45°C), (3) acidic pH (pH 4) and (4) the nitric oxide (NO) donor sodium nitroprusside (SNP). Sperm DNA fragmentation was analyzed after an incubation period of chronic (24h), or acute (1h) exposure to each treatment followed by incubation at 37°C over a period of 24h. SDF was assessed using the sperm chromatin dispersion (SCD) test. Dynamic SDF for each treatment was analyzed using Kaplan-Meier survival curves. All agents, except for ionizing radiation, accelerated SDF kinetics following chronic exposure over a 24h period. Transient exposure to NO and heat but not acidic pH increased the basal (T0) level of SDF. Despite the removal of the three toxicants, the remaining sperm following acute exposure showed a decrease in their expected DNA longevity. It is concluded that the assessment of sperm DNA fragmentation dynamics is an effective methodological approach for revealing latent damage associated with toxicants that is not initially expressed following a single initial observation of SDF.  相似文献   

8.
The objectives of this study were to: (a) test the functional activity of Chinchilla lanigera spermatozoa suspended in either glycerol or ethylene glycol, cooled to 4 degrees C, and stored for 24 or 72 h and (b) investigate, after these cooling periods, the effects of incubating sperm at 37 degrees C (for 4 h) upon sperm functional activity. The ejaculate was mixed with the cryoprotectant medium (at 1 M final concentration) and cooled to 4 degrees C. After warming, sperm motility, sperm viability, hypoosmotic swelling test results, and acrosomal integrity were significantly higher for samples containing ethylene glycol than for those in glycerol, stored for 24 or 72 h, and then assayed after 0 or 4 h incubation at 37 degrees C. A significant reduction of sperm motility and viability was detected only when the glycerol cryoprotectant agent was employed, compared to the fresh samples. These results clearly indicate that under our experimental conditions, ethylene glycol is a better protectant for sperm storage than glycerol.  相似文献   

9.
This study investigated the hypothesis that post-thaw incubation of ram sperm at high concentrations results in a faster rate of DNA fragmentation than when sperm are incubated at a lower concentration. Ejaculates from 10 rams were frozen-thawed, prepared in sperm concentrations of 100, 50, 25, 12, and 6 × 106 sperm/mL, and incubated for 6 h at 37 °C. Sperm DNA fragmentation was assessed using the sperm chromatin dispersion test (Sperm-Halomax®) at 1, 3, 4, and 6 h of incubation at 37 °C. On fitting a binary logistic regression with a cubic over time and treating ram and dilution levels as factors, there were significant effects with respect to the ram, dilution and time (all P-values were very much smaller than 0.001). Therefore, DNA fragmentation dynamics of incubated frozen-thawed ram sperm were not only dependent on the inherent sperm DNA fragmentation expressed immediately after thawing, but also on the concentration of sperm incubated in the sample. Although there was evidence of individual ram variation in SDF during the incubation period, the general finding of the current study was that lower sperm concentrations resulted in a slower rate of DNA fragmentation These findings have important implications for the post-thaw manipulation of ram sperm used for AI and advanced reproductive procedures that use sperm at low concentrations. Our data also emphasised the highly dynamic nature of sperm DNA fragmentation and the importance of conducting the procedure in a standardised manner.  相似文献   

10.
The objective of this study was to evaluate the addition of IGF-I to pig insemination doses stored at 15°C, in conjunction with the addition of different amounts of vitamin E (α-tocopherol). Semen samples (n = 12) from four boars were treated by the addition of different concentrations of vitamin E, ranging up to 400 μg/ml. Immediately after processing and after the doses had been stored at 15°C for 24 or 72 h, samples were warmed at 37°C and 30 ng/ml of IGF-I was added. The assessments were made after 10 and 120 min of IGF-I addition. There was a minor effect of the vitamin E added before cooling and IGF-I added after storage on sperm quality. The addition of 400 μg/ml of vitamin E to diluted semen reduced (P < 0.01) the malondialdehyde (MDA) production in boar semen stored at 15°C for 72 h, regardless of the addition of IGF-I as additive during a 120 min incubation period at 37°C. In these conditions, IGF-I also reduced (P < 0.05) the MDA production in semen samples without addition of vitamin E. IGF-I in the presence of vitamin E reduced (P = 0.03) the glucose intake in freshly diluted boar semen samples before cooling. It was concluded that the addition of 400 μg/ml of vitamin E reduces the MDA production in boar semen stored at 15°C for 72 h, regardless of the presence of IGF-I additive. The addition of IGF-I in doses stored for 72 h with vitamin E ensures higher sperm motility after 120 min of incubation at 37°C.  相似文献   

11.
From a biological viewpoint spermatozoa are ejaculated by the male and received into the female while maintaining roughly constant temperature, which in most mammals is below the temperature of the soma. When ejaculated spermatozoa are used for artificial reproductive purposes a temperature excursion episode is produced, because the spermatozoa are often stored as frozen or chilled samples and the biological temperature is only recovered after insemination. In this study we have analyzed the effects of cooling (to 15 degrees C) and freezing ram spermatozoa on the subsequent sperm DNA fragmentation index (sDFI) during a varying period of storage at 37 degrees C. The aim was to emulate in vivo processes that cooled or frozen-thawed spermatozoa experience after insemination. The study was performed using commercial semen samples derived from rams regularly used for reproductive purposes. Semen samples were studied after a cooling or cryopreservation episode followed by biological temperature recovery and incubation up to 48h. The results indicated that when spermatozoa experience a severe (frozen) or mild (cooled) temperature excursion episode, major effects on sperm viability and DNA fragmentation are induced and cause the subsequent rapid decline of ram sperm quality. This effect could be detected just at the onset of the biological temperature recovery. Sperm DNA damage in cooled samples was observed after 5h of incubation at 37 degrees C, while this time was reduced to less than 60min in frozen-thaw samples. The dynamics of sDFI in different animals, analyzed under the same experimental conditions, was different from one sample to another, regardless of the method used for storage. Sperm viability was better preserved in cooled rather than in frozen samples. While for the frozen-thawed samples sperm viability was almost abolished after 5h of incubation, a stable proportion of viable spermatozoa (ranging from 20% to 60%) was observed in the cooled samples at the corresponding time points. Finally, with respect to the prevalence of sDFI in ram, the level commonly found was lower than 5% at the onset of the experiment. However, sDFI was higher than 5% in 25% of the samples and in 15% of rams this index exceeded 10%.  相似文献   

12.
The aim of our study was to evaluate the bio-kinetic characteristics of human semen refrigerated for different periods and to compare the effects of refrigeration at +4 °C against cryopreservation of human sperm at −196 °C. Semen was obtained from 30 male partners of infertile couples (infertile subjects) with the following semen profile: sperm count ≥10 × 106/ml; progressive motility ≥20%; atypical forms <70% and white blood cells <1.0 × 106/ml. Fifteen normospermic subjects were also selected as controls (control subjects). The following tests were carried out on basal, refrigerated and cryopreserved sperm: a) sperm kinetic properties (by Superimposed Image Analysis System); b) the Hypoosmotic Viability Test (HVT) (combined Hypoosmotic Swelling and Viability Test). The results of the study showed that the percentage recovery of kinetic properties and of HVT were optimum for up to 48 h. After refrigeration for 72 h, a drastic decrease in straight motility recovery was observed. No significant differences were observed between cryopreservation and refrigeration at +4 °C for 48 h for motility or HVT recoveries in samples from control subjects. However, in infertile subjects, a significant decrease in straight progressive motility and HVT recoveries was observed in cryopreserved samples compared to those refrigerated for 48 h. Neither refrigeration nor cryopreservation led to the growth of pathogenic bacteria in any of the cases studied. Based on the above results, refrigeration could represent a useful alternative to the cryopreservation method.  相似文献   

13.
《Cryobiology》2016,73(3):210-215
Several methods are currently available for selection when conducting sperm cryopreservation, however, these methods might cause different degrees of damage on sperm DNA. The aim of the this study is to compare the effects of storage at −80 °C (in ultra-low temperature refrigerator) and at −196 °C (in liquid nitrogen) on sperm DNA damage, thus to provide a reference for choosing the right method according to different aims. We randomly collected 28 semen samples from college students of Chongqing city. The samples stored at −80 °C were neat semen samples and the samples stored at −196 °C were mixed with additional cryoprotectants. Each sample was subjected to two freezing-thawing cycles, and the sperm DNA damage levels of fresh and thawed samples were measured by single cell gel electrophoresis (SCGE) and sperm chromatin structure assay (SCSA). Both SCGE and SCSA assays showed cryopreservation induced significant damage to sperm DNA. However, storage at −196 °C lead to more severe damage to sperm DNA than storage at −80 °C measured by SCSA. Sperm DNA damage increased simultaneously with the higher frequency of freezing-thawing cycles. We concluded that storage of neat semen samples at −80 °C had milder damage to sperm DNA than storage at −196 °C mixed with cryoprotectants. To avoid additional sperm DNA damage, repeated freezing and thawing should be prevented.  相似文献   

14.
The objective was to determine the effect of different thaw rates on motility, survival and acrosomal integrity of buffalo spermatozoa frozen in medium French straws. Sixteen ejaculates from four mature buffalo bulls of Murrah breed were tested in a 4 × 4 × 4 factorial combination. Semen was extended in Tris-egg yolk-glycerol extender, frozen in 0.5 ml polyvinyl chloride straws in liquid nitrogen vapour and stored in liquid nitrogen for 24 h. Straws were thawed at water bath temperatures of 30°, 37° or 75°C for 30 s, 15 or 30 s, and 9 s respectively. Semen was incubated at 37°C for 6 h and evaluated at hourly intervals for percentage of motile spermatozoa (% MOT), percentage of total spermatozoa with intact acrosomes (PIA) and percentage of spermatozoa with intact, healthy acrosomes (PIHA) after 0 and 3 h of incubation. The initial post-thaw motility (0 h) averaged 66.9, 66.6, 72.1 and 64.6% for the four thaw rates respectively. Differences were significant between thaw rates for % MOT at 0 h (P < 0.05) and 1 h (P < 0.01) evaluation, post-thaw sperm survival at 37°C and absolute index of sperm survival. Bulls also differed (P < 0.01) for % MOT at 1, 2, 3 and 4 h evaluation, post-thaw sperm survival at 37°C and absolute index of sperm survival. Significant (P < 0.01) interaction of thaw rate × bull for % MOT at 1 h evaluation was observed. Neither treatments nor bulls had any significant effect on PIA and PIHA after 0 and 3 h incubation. Thaw rate of 37°C for 30 s was comparatively superior to other rates studied.  相似文献   

15.
When intracytoplasmic sperm injection (ICSI) is performed in mice, isolation of sperm heads is usually performed prior to injections in order to increase the efficiency of the procedure. Consequently, the isolated sperm heads undergo an inevitable incubation in vitro. However, little is known about the effects of this incubation step on fertilization and embryo development following ICSI. When we incubated sperm heads at 37 °C, there was a significant time-dependent decrease in fertilization and blastocyst formation. Moreover, the DNA integrity of the sperm heads was maintained over 12 h incubation. Using assisted oocyte activation, these defects in fertilization and embryo development were rescued. Taken together, incubation of sperm heads following isolation can affect the oocyte-activating capacity of sperm thereby compromising fertilization and embryo development associated with ICSI.  相似文献   

16.
《Reproductive biology》2020,20(1):75-80
Refreezing of sperm samples would provide the possibility of performing more cycles of fertility treatments. Although the effect of repeated cycles of freezing on sperm quality was studied, the effect of the length of the time interval between each freeze-thaw cycle has not been reported. Hence, we assessed the effect of incubation time on the sperm quality of thawed sperm after repeated freezing.One-hundred samples of potential sperm donations with normal sperm quality were evaluated. The fresh semen samples were analyzed and cryopreserved in liquid nitrogen until use. After thawing, the samples were divided randomly to two groups and reanalyzed for motility, vitality, and DNA fragmentation. They were incubated at room temperature and reanalyzed after either 90 min (group A) or 180 min (group B) of incubation, and once again after a repeated cycle of freezing and thawing.Our results showed that the sperm parameters of fresh samples of both groups were similar. After one freeze-thaw cycle, both groups still had comparable values. At the end of their respective incubation time periods, however, there was a significant difference in the mean values of the assessed parameters between the two groups (p < 0.01). An additional freeze-thaw cycle further exacerbated those differences, with group B undergoing an even more substantial decline (p < 0.001).Our data suggest that thawed human spermatozoa sustain a significant decline in sperm parameters in association with longer incubation time, which is further exacerbated by an additional freeze-thaw cycle.  相似文献   

17.
Human skin allografts can be preserved by different methods. In our clinical practice, human skin allografts are harvested on multi-organ and tissue donors, transferred at +4°C in Ringer Lactate, cryopreserved with 15% Glycerol and held in the vapor phase of a liquid nitrogen freezer until delivery to the burn center. The aim of this experimental study was to evaluate the impact of transport medium and cryoprotectant on the viability of human skin allografts. For this purpose, we compared skin samples harvested from 19 multi-organ and tissue donors with two different transport media and two different cryoprotectants. Viability was assessed by the MTT assay after harvesting at laboratory reception, during storage (at +4°C) at day 2 and day 7, and after cryopreservation and thawing. Histopathological analysis was performed for each MTT assay. Results indicate that, when stored at +4°C, skin retains more viability with RPMI, whereas Glycerol and DMSO are equivalent cryoprotectants regardless of the transport medium. In conclusion, our protocol could be improved by the utilization of RPMI as transport medium.  相似文献   

18.
The aim of the present study was to compare the effects of two freezing methods, vapor phase and very rapid freezing, with and without cryoprotectant on semen parameters in men with normal semen criteria. Cryopreservation was done on semen samples from 31 men by two methods of vapor phase freezing and very rapid freezing, with and without Test Yolk buffered glycerol (TYBG) as cryoprotectant. The motility, viability, acrosome and DNA integrity were evaluated on fresh and post-thaw samples. Post-thaw sperm progressive motility was significantly higher in the presence of TYBG in the vapor phase cryopreservation (%6.30 ± 3.74) compared with the very rapid freezing method (%2.2 ± 1.97 and %4.00 ± 2.42 in the presence and absence of TYBG, respectively). There was no significant difference in viability, acrosome status and DNA integrity between two methods in presence or absence of TYBG. The very rapid freezing method in the absence of TYBG showed better sperm motility but viability, acrosome and DNA integrity were similar to the presence of TYBG. The results show that cryopreservation of human spermatozoa together with seminal plasma by using vapor phase method is better than very rapid freezing method to preserve sperm progressive motility; however very rapid freezing method is quick and simple and do not require special cryoprotectant. It can be used for cryopreservation of small number of spermatozoa in IVF centers.  相似文献   

19.
This study investigated the application of intra- and extra-cellular cryoprotectant combinations on the quality of curimba Prochilodus lineatus semen subjected to cryopreservation. Semen treatments were tested with 8% DMSO or methanol as intracellular cryoprotectant, 5% egg yolk or lactose as extracellular cryoprotectant and 5% BTS. These cryoprotectant combinations are suitable for curimba but have not been tested at the lesser concentrations proposed or in combination with BTS. Semen samples collected from 19 curimbas were diluted into one of four cryoprotectant combinations: DMSO+yolk; DMSO+lactose; methanol+yolk; and methanol+lactose. After dilution, semen samples were cryopreserved in 0.5 mL straws for 10 days in a liquid nitrogen tank. Semen was thawed in a water bath at 60°C for 8s. We evaluated the quality of fresh, diluted (pre-freezing) and post-freezing semen according to sperm motility rate (%) and duration (s). Sperm morphology was also analyzed in thawed semen. Sperm motility rate decreased progressively after dilution and thawing. The motility rate in post-freezing semen was higher in the treatments using DMSO+lactose and methanol+yolk. Sperm motility duration in post-freezing sperm was greater in the treatments using methanol rather than DMSO as intracellular cryoprotectant, irrespective of the extracellular cryoprotectant used. Abnormality frequency in thawed sperm was less in semen treated with egg yolk than with lactose. Thus the use of methanol intracellular cryoprotectant is recommended along with yolk extracellular cryoprotectant in the cryopreservation process for curimba semen.  相似文献   

20.
The dynamics of sperm DNA fragmentation (sDF) and sperm viability were analyzed in frozen-thawed sperm samples of Equus asinus (Zamorano-Leonés), a breed at risk of extinction. Sperm DNA fragmentation was assessed using an adaptation of the sperm chromatin dispersion test developed for stallions in five different frozen samples. Sperm were thawed and incubated at different temperatures (37 degrees C, 25 degrees C, and 4 degrees C) and sDF was assessed at different times and compared. The mean sDF after thawing at the beginning of the experiment was 18.20+/-14.77% and did not differ significantly from the results of a neutral comet assay (22.0+/-19.34%). The tendency in the sDF of all donkeys indicated that sperm DNA is more sensitive to breakage when incubated at 37 degrees C than when incubated at 25 degrees C or 4 degrees C. Interestingly, the tendency was not the same when different animals were compared, and differences in sDF dynamics were established among individuals. sDF correlated negatively with sperm viability in some individuals but not in others. From a conservation perspective, sDF analysis may offer a new way to assess sperm quality in endangered breeds in order to identify and select the best semen samples for artificial reproduction purposes. In particular, we recommend for artificial insemination the use of semen samples with a slow increase in sDF with time after thawing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号