首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Method of 3-D reconstruction approaches for early mouse embryo in preimplantation stages was modified. The developed technique is based on application of light microscopy of serial thin sections and well known soft operating. The designed method enabled us 1) to get serial sections of a single mouse embryo; 2) to create an orthogonal system independent on the sample for orientation of virtual sections. The adequacy of 3-DR protocol was checked on reconstruction of air bubbles embedded in epoxy resin as a model of sphere.  相似文献   

2.

Background

Digital holography provides a non-invasive measurement of the quantitative phase shifts induced by cells in culture, which can be related to cell volume changes. It has been shown previously that regulation of cell volume, in particular as it relates to ionic homeostasis, is crucially involved in the activation/inactivation of the cell death processes. We thus present here an application of digital holographic microscopy (DHM) dedicated to early and label-free detection of cell death.

Methods and Findings

We provide quantitative measurements of phase signal obtained on mouse cortical neurons, and caused by early neuronal cell volume regulation triggered by excitotoxic concentrations of L-glutamate. We show that the efficiency of this early regulation of cell volume detected by DHM, is correlated with the occurrence of subsequent neuronal death assessed with the widely accepted trypan blue method for detection of cell viability.

Conclusions

The determination of the phase signal by DHM provides a simple and rapid optical method for the early detection of cell death.  相似文献   

3.
A computer-assisted three-dimensional (3D) system, 3D-DIASemb, has been developed that allows reconstruction and motion analysis of cells and nuclei in a developing embryo. In the system, 75 optical sections through a live embryo are collected in the z axis by using differential interference contrast microscopy. Optical sections for one reconstruction are collected in a 2.5-s period, and this process is repeated every 5 s. The outer perimeter and nuclear perimeter of each cell in the embryo are outlined in each optical section, converted into beta-spline models, and then used to construct 3D faceted images of the surface and nucleus of every cell in the developing embryo. Because all individual components of the embryo (i.e., each cell surface and each nuclear surface) are individually reconstructed, 3D-DIASemb allows isolation and analysis of (1) all or select nuclei in the absence of cell surfaces, (2) any single cell lineage, and (3) any single nuclear lineage through embryogenesis. Because all reconstructions represent mathematical models, 3D-DIASemb computes over 100 motility and dynamic morphology parameters for every cell, nucleus, or group of cells in the developing embryo at time intervals as short as 5 s. Finally, 3D-DIASemb reconstructs and motion analyzes cytoplasmic flow through the generation and analysis of "vector flow plots." To demonstrate the unique capabilities of this new technology, a Caenorhabditis elegans embryo is reconstructed and motion analyzed through the 28-cell stage. Although 3D-DIASemb was developed by using the C. elegans embryo as the experimental model, it can be applied to other embryonic systems. 3D-DIASemb therefore provides a new method for reconstructing and motion analyzing in 4D every cell and nucleus in a live, developing embryo, and should provide a powerful tool for assessing the effects of drugs, environmental perturbations, and mutations on the cellular and nuclear dynamics accompanying embryogenesis.  相似文献   

4.
The direct method of volumetric parameters’ measurement of early mammal embryo was developed. The sample preparation was based on embryo cryofixation followed by laser scanning microscopy. Digital image processing and three dimensional reconstruction of embryos was performed with standard graphic software. The availability of a developed technique for the analysis of cell physiology at cultivation conditions was demonstrated on isolated two-cell mouse embryo.  相似文献   

5.
Osmotic adaptation in a mouse embryo blastomere has been studied by direct measurement of the cell volume using microtomography (laser scanning microscopy followed by quantitative 3D reconstruction). Embryo cells subjected to hypotonic shock first swelled but then returned to the initial size. At the beginning of osmotic stress, the swelling obeyed the van’t Hoff equation with a water permeability coefficient of 0.4 μm min−1 atm−1. The regulatory volume decrease was not abolished by Na+/K+-ATPase inhibition.  相似文献   

6.
3D confocal reconstruction of gene expression in mouse   总被引:1,自引:0,他引:1  
Three-dimensional computer reconstructions of gene expression data will become a valuable tool in biomedical research in the near future. However, at present the process of converting in situ expression data into 3D models is a highly specialized and time-consuming procedure. Here we present a method which allows rapid reconstruction of whole-mount in situ data from mouse embryos. Mid-gestation embryos were stained with the alkaline phosphotase substrate Fast Red, which can be detected using confocal laser scanning microscopy (CLSM), and cut into 70 microm sections. Each section was then scanned and digitally reconstructed. Using this method it took two days to section, digitize and reconstruct the full expression pattern of Shh in an E9.5 embryo (a 3D model of this embryo can be seen at genex.hgu.mrc.ac.uk). Additionally we demonstrate that this technique allows gene expression to be studied at the single cell level in intact tissue.  相似文献   

7.
小鼠胚胎干细胞分化形成拟胚体过程中的细胞程序性死亡   总被引:1,自引:0,他引:1  
为了检测小鼠胚胎干细胞 (embryonicstemcell ,ES细胞 )体外分化的拟胚体 (embryoidbodies ,EBs)形成过程中细胞程序性死亡 (programmedcelldeath ,PCD)的发生 ,通过悬滴、悬浮培养技术定向诱导未分化的ES细胞分化为拟胚体 ,并用RT PCR检测原始内胚层、原始外胚层、中胚层、内脏内胚层 4种分子标记物在EBs中的表达 .通过TUNEL染色、电镜、激光共聚焦显微镜及Western印迹以确定凋亡发生 .结果表明 :ES细胞体外分化为拟胚体并且表达各胚层相应的分子标记物 ;在拟胚体的发育过程中出现明显的空腔化过程 ,TUNEL染色及电镜观察到凋亡生成 ,同时线粒体膜电位 (ΔΨm)在拟胚体发育过程中降低 ,通过Western印迹检测到caspase3、caspase8的激活 .表明小鼠ES细胞所分化的拟胚体可以作为研究早期胚胎发育的实验模型 ,线粒体在拟胚体的细胞程序性死亡过程中发挥重要的作用 .为进一步利用拟胚体研究细胞程序性死亡及相关信号分子在小鼠胚胎发育早期的作用奠定了基础  相似文献   

8.
Delineation of a cell’s ultrastructure is important for understanding its function. This can be a daunting project for rare cell types diffused throughout tissues made of diverse cell types, such as enteroendocrine cells of the intestinal epithelium. These gastrointestinal sensors of food and bacteria have been difficult to study because they are dispersed among other epithelial cells at a ratio of 1:1,000. Recently, transgenic reporter mice have been generated to identify enteroendocrine cells by means of fluorescence. One of those is the peptide YY-GFP mouse. Using this mouse, we developed a method to correlate confocal and serial block-face scanning electron microscopy. We named the method cocem3D and applied it to identify a specific enteroendocrine cell in tissue and unveil the cell’s ultrastructure in 3D. The resolution of cocem3D is sufficient to identify organelles as small as secretory vesicles and to distinguish cell membranes for volume rendering. Cocem3D can be easily adapted to study the 3D ultrastructure of other specific cell types in their native tissue.  相似文献   

9.
Despite the major advancements during the last decade with respect to both knowledge of higher order chromatin organization in the cell nucleus and the elucidation of epigenetic mechanisms of gene control, the true three-dimensional (3D) chromatin structure of endogenous active and inactive gene loci is not known. The present study was initiated as an attempt to close this gap. As a model case, we compared the chromatin architecture between the genetically active and inactive domains of the imprinted Prader-Willi syndrome (PWS) locus in human fibroblast and lymphoblastoid cell nuclei by 3D fluorescence in situ hybridization and quantitative confocal laser scanning microscopy. The volumes and 3D compactions of identified maternal and paternal PWS domains were determined in stacks of light optical serial sections using a novel threshold-independent approach. Our failure to detect volume and compaction differences indicates that possible differences are below the limits of light optical resolution. To overcome this limitation, spectral precision distance microscopy, a method of localization microscopy at the nanometer scale, was used to measure 3D distances between differentially labeled probes located both within the PWS region and in its neighborhood. This approach allows the detection of intranuclear differences between 3D distances down to about 70-90 nm, but again did not reveal clearly detectable differences between active and inactive PWS domains. Despite this failure, a comparison of the experimental 3D distance measurements with computer simulations of chromatin folding strongly supports a non-random higher order chromatin configuration of the PWS locus and argues against 3D configurations based on giant chromatin loops. Our results indicate that the search for differences between endogenous active and inactive PWS domains must be continued at still smaller scales than hitherto possible with conventional light microscopic procedures. The possibilities to achieve this goal are discussed.  相似文献   

10.
The goal of the International Mouse Phenotyping Consortium (IMPC) is to phenotype targeted knockout mouse strains throughout the whole mouse genome (23,000 genes) by 2021. A significant percentage of the generated mice will be embryonic lethal; therefore, phenotyping methods tuned to the mouse embryo are needed. Methods that are robust, quantitative, automated and high-throughput are attractive owing to the numbers of mice involved. Three-dimensional (3D) imaging is a useful method for characterizing morphological phenotypes. However, tools to automatically quantify morphological information of mouse embryos from 3D imaging have not been fully developed. We present a representative mouse embryo average 3D atlas comprising micro-CT images of 35 individual C57BL/6J mouse embryos at 15.5 days post-coitum. The 35 micro-CT images were registered into a consensus average image with our automated image registration software and 48 anatomical structures were segmented manually. We report the mean and variation in volumes for each of the 48 segmented structures. Mouse organ volumes vary by 2.6-4.2% on a linear scale when normalized to whole body volume. A power analysis of the volume data reports that a 9-14% volume difference can be detected between two classes of mice with sample sizes of eight. This resource will be crucial in establishing baseline anatomical phenotypic measurements for the assessment of mutant mouse phenotypes, as any future mutant embryo image can be registered to the atlas and subsequent organ volumes calculated automatically.  相似文献   

11.
Stereological tools are the gold standard for accurate (i.e., unbiased) and precise quantification of any microscopic sample. The past decades have provided a broad spectrum of tools to estimate a variety of parameters such as volumes, surfaces, lengths, and numbers. Some of them require pairs of parallel sections that can be produced by either physical or optical sectioning, with optical sectioning being much more efficient when applicable. Unfortunately, transmission electron microscopy could not fully profit from these riches, mainly because of the large depth of field. Hence, optical sectioning was a long-time desire for electron microscopists. This desire was fulfilled with the development of electron tomography that yield stacks of slices from electron microscopic sections. Now, parallel optical slices of a previously unimagined small thickness (2-5 nm axial resolution) can be produced. These optical slices minimize problems related to overprojection effects, and allow for direct stereological analysis, e.g., volume estimation with the Cavalieri principle and number estimation with the optical disector method. Here, we demonstrate that the symbiosis of stereology and electron tomography is an easy and efficient way for quantitative analysis at the electron microscopic level. We call this approach quantitative 3D electron microscopy.  相似文献   

12.
The distribution of cell wall material between different plantcell types may contribute significantly to the variation indegradability of plant material with a similar overall chemicalcomposition but different anatomy. Assessment of the degradabilityof cell walls in a section suitable for digestion is a three-dimensional(3-D) problem because of the thickness of section required (50–100µm). Optical sectioning of thick sections using confocallaser scanning microscopy (CLSM) provides a method of estimatingthe volume of cell wall material present in tissue sectionsbefore and after digestion, and of visualizing the plant tissueusing 3-D image reconstruction. The use of CLSM enables degradabilitymeasurements to be made on cellsin situand can provide moreimmediate and relevant information than can be obtained by mechanicalfractionation of the tissues. The CLSM method has been usedto visualize thick sections taken from maize and barley internodesbefore and after degradation with cell wall degrading enzymes.Quantitative measurements of cell wall volume and mean cellwall thickness were made on a series of optical sections, andthe potential of the method for quantitation of cell wall degradabilityis assessed. Image analysis; plant anatomy; confocal microscopy; degradation; maize  相似文献   

13.
Recent design-based stereological methods that can be applied to thick sections cut in an arbitrary direction are presented and their implementation for measuring mesophyll anatomical characteristics is introduced. These methods use software-randomized virtual 3D probes, such as disector and fakir test probes, in stacks of optical sections acquired using confocal microscopy. They enable unbiased estimations of the mean mesophyll cell volume, mesophyll cell number in a needle, and for the first time an internal surface area of needles or other narrow leaves directly from the fresh tissue cross-sections cut using a hand microtome. Therefore, reliable results can be obtained much faster than when using a standard microtechnical preparation. The proposed methods were tested on Norway spruce needles affected for 1 year by acid rain treatment. The effect of acid rain resulted in changes of mesophyll parameters: the ratio of intercellular spaces per mesophyll cell volume increased, while needle internal surface area, total number of mesophyll cells, and number of mesophyll cells per unit volume of a needle decreased in the treated needles.  相似文献   

14.
Stereological tools are the gold standard for accurate (i.e., unbiased) and precise quantification of any microscopic sample. The past decades have provided a broad spectrum of tools to estimate a variety of parameters such as volumes, surfaces, lengths, and numbers. Some of them require pairs of parallel sections that can be produced by either physical or optical sectioning, with optical sectioning being much more efficient when applicable. Unfortunately, transmission electron microscopy could not fully profit from these riches, mainly because of the large depth of field. Hence, optical sectioning was a long-time desire for electron microscopists.This desire was fulfilled with the development of electron tomography that yield stacks of slices from electron microscopic sections. Now, parallel optical slices of a previously unimagined small thickness (2–5 nm axial resolution) can be produced. These optical slices minimize problems related to overprojection effects, and allow for direct stereological analysis, e.g., volume estimation with the Cavalieri principle and number estimation with the optical disector method.Here, we demonstrate that the symbiosis of stereology and electron tomography is an easy and efficient way for quantitative analysis at the electron microscopic level. We call this approach quantitative 3D electron microscopy.  相似文献   

15.
Histology volume reconstruction facilitates the study of 3D shape and volume change of an organ at the level of macrostructures made up of cells. It can also be used to investigate and validate novel techniques and algorithms in volumetric medical imaging and therapies. Creating 3D high-resolution atlases of different organs1,2,3 is another application of histology volume reconstruction. This provides a resource for investigating tissue structures and the spatial relationship between various cellular features. We present an image registration approach for histology volume reconstruction, which uses a set of optical blockface images. The reconstructed histology volume represents a reliable shape of the processed specimen with no propagated post-processing registration error. The Hematoxylin and Eosin (H&E) stained sections of two mouse mammary glands were registered to their corresponding blockface images using boundary points extracted from the edges of the specimen in histology and blockface images. The accuracy of the registration was visually evaluated. The alignment of the macrostructures of the mammary glands was also visually assessed at high resolution.This study delineates the different steps of this image registration pipeline, ranging from excision of the mammary gland through to 3D histology volume reconstruction. While 2D histology images reveal the structural differences between pairs of sections, 3D histology volume provides the ability to visualize the differences in shape and volume of the mammary glands.  相似文献   

16.
In this review we present immunohistochemical methods for visualization of capillaries and muscle fibres in thick muscle sections. Special attention is paid to the procedures that preserve good morphology. Applying confocal microscopy and virtual 3D stereological grids, or tracing of capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to a muscle fibre per fibre length, fibre surface area or fibre volume can be evaluated by an unbiased approach. Moreover, 3D models of capillaries and muscle fibres can be produced. Comparison of the developed methods with counting capillary profiles from 2D sections is discussed and the reader is warned that counting capillary profiles from 2D sections can underestimate the capillary length by as much as 75 percent. Application of the described 3D methodology is illustrated by the anatomical remodelling of capillarity during acute denervation and early reinnervation in the rat soleus and extensor digitorum longus muscles.  相似文献   

17.
Organ development is a complex spatial process in which local differences in cell proliferation rate play a key role. Understanding this role requires the measurement of the length of the cell cycle at every position of the three-dimensional (3D) structure. This measurement can be accomplished by exposing the developing embryo to two different thymidine analogues for two different durations immediately followed by tissue fixation. This paper presents a method and a dedicated computer program to measure the resulting labelling indices and subsequently calculate and visualize local cell cycle lengths within the 3D morphological context of a developing organ. By applying this method to the developing heart, we show a large difference in cell cycle lengths between the early heart tube and the adjacent mesenchyme of the pericardial wall. Later in development, a local increase in cell size was found to be associated with a decrease in cell cycle length in the region where the chamber myocardium starts to develop. The combined application of halogenated-thymidine double exposure and image processing enables the automated study of local cell cycle parameters in single specimens in a full 3D context. It can be applied in a wide range of research fields ranging from embryonic development to tissue regeneration and cancer research.  相似文献   

18.
Summary We have initiated experiments to understand the molecular regulation of embryo sac development in flowering plants by a study of ribosome synthesis and accumulation. Because of the very small size of the embryo sac and the large volume of ovule tissue it is embedded in, in situ hybridization with nucleic acid probes is presently the only practical method for such molecular measurements on individual cells of the embryo sac. Methods of tissue preparation, sectioning and screening of ovules for embryo sac containing sections, in situ hybridization using a ribosomal mRNA probe, and staining were optimized. Relative densities of silver grains for individual cells of the mature maize (W22) embryo sac were determined from in situ hybridizations. The silver grain counts are directly related to the numbers of ribosomes. Volumes of individual cells were determined by confocal microscope image analysis, and this permitted the calculation of the relative total numbers of ribosomes in individual cells of the embryo sac and nucellus. The central cell has a volume 260 times that of a nucellar cell at the micropylar end of the ovule, 15 times that of the egg cell, 30 times that of a synergid, and 130 times the volume of an antipodal cell. The mature maize embryo sac has 20 or more antipodal cells. The central cell has approximately 200 times the number of ribosomes as are present in a nucellar cell, about 7 times as many ribosomes as are in the egg cell, 14 times as many ribosomes as in each synergid, and about 80 times the ribosome content of individual antipodal cells. The data are discussed with respect to the utilization of the ribosomes following fertilization in the early embryo and endosperm.  相似文献   

19.
Abstract. The radiosensitivity of pronuclear mouse (B6D2 F1 x ICR) embryos has been measured in vitro as a function of time during the cell cycle. This was done by measuring the dose of X-rays (LD50) required to prevent development of 50% of the pronuclear embryos to the blastocyst stage in 5 days of culture. The LD50 was found to vary from 1 to 2 Gy during the period from G1 to the first cleavage. The cell cycle in the pronuclear embryo was analysed by [3H]thymidine autoradiography. Compared with earlier studies on two-cell mouse embryo radiosensitivity, the pronuclear embryos appear to be more sensitive to radiation than the two-cell embryos. If, however, one considers the radiation sensitivity on a blastomere basis, the pronuclear embryos are not different in their radiation sensitivity from the two-cell embryos. Thus, during the early cleavage stages of mice, radiosensitivity is mainly governed by the content of cells of various cell cycle ages in the embryo.  相似文献   

20.
Aspects of the early lineages of blastomeres in the embryo of the zebrafish, Brachydanio rerio have been described. Because of the optical clarity of the embryo, lineages of selected cells can be followed directly by microscopy through many cell divisions. Also, it is shown here that the fluorescent molecules fluorescein-dextran and rhodamine-horseradish peroxidase can be used as cell lineage tracers, marking the clonal progeny of founding blastomeres. The labeled cells can be easily visualized in the live embryo, and utilizing a sensitive video camera to amplify fluorescence, the same clone may be examined repeatedly while the cells divide and migrate. Cells that descend from a single blastomere remain closely associated together through the end of the blastula stage. At the time when epiboly begins (early gastrula) cells in the labeled clone scatter and become dispersed among unlabeled cells. It has been observed that there is no invariant mapping of the embryo's midline (determined by the position of the embryonic shield in the gastrula) with respect to the early planes of cleavage. This finding shows that in the zebrafish the region of the embryo that a cell will occupy is not specified by the cell's early ancestory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号