首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The induction of Photosystem II chlorophyll fluorescence from chloroplasts blocked with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and uncoupled with gramicidin has been measured. 2. In agreement with other authors it was found that the addition of cations to chloroplasts suspended in a low-cation medium not only stimulated the intensity of fluorescence but also changed the shape of the induction from being nearly exponential to being sigmoid. 3. A new theory of the photosynthetic unit of Photosystem II (Paillotin, G. (1976) J. Theor. Biol. 58, 237--252) was used to analyse the fluorescence inductions. 4. A comparison of the results of the Paillotin model with the experimental data suggests that excitation energy is not able to migrate between all the photosynthetic units of a photosynthetic domain. However, it is concluded that excitation energy may migrate from one photosynthetic unit to another, and that the energy migration is in competition with other processes leading to the decay of the excitation within Photosystem II. 5. It is suggested that the size of the "functional" photosynthetic unit, defined as the number of chlorophyll molecules that may communicate with a reaction centre, is variable.  相似文献   

2.
Several methods for determination of the antenna heterogeneity of Photosystem II from fluorescence rise curves measured with DCMU have been developed so far. Using these methods, two, three or four types of Photosystem II with respect to the antenna heterogeneity were determined. However, the accuracy of some of these methods is under debate. Here, we present a new method for the determination of the antenna heterogeneity of Photosystem II. The method is based on direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different intensities of light excitation. As several curves measured under different light conditions are fitted simultaneously by the same model, reliability and accuracy in determination of model parameters increase. Our method was applied to two plant materials with different structure of the thylakoid membrane: wheat leaves and cells of green alga Chlamydomonas reinhardtii. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Inhibition of Photosystem II in Isolated Chloroplasts by Lead   总被引:4,自引:3,他引:1       下载免费PDF全文
Inhibition of photosynthetic electron transport in isolated chloroplasts by lead salts has been demonstrated. Photosystem I activity, as measured by electron transfer from dichlorophenol indophenol to methylviologen, was not reduced by such treatment. However, photosystem II was inhibited by lead salts when electron flow was measured from water to methylviologen and Hill reaction or by chlorophyll fluorescence. Fluorescence induction curves indicated the primary site of inhibition was on the oxidizing side of photosystem II. That this site was between the primary electron donor of photosystem II and the site of water oxidation could be demonstrated by hydroxylamine restoration of normal fluorescence following lead inhibition.  相似文献   

4.
研究了冷害温度对具有不同抗冷性品种的番茄叶片的体内叶绿素a荧光诱导动力曲线的影响。实验结果指出,在低温处理(8℃,5℃,2℃下,暗中24小时)后,番茄叶片的体内叶绿素a荧光诱导动力学曲线有了明显的改变,Fv/Fo值、Rfd值降低了,光系统II原初光能转换效率和潜在的光合活力均受到抑制。我们在苗期和开花期得到的实验结果均表明,在番茄叶片的叶绿素a荧光诱导动力学曲线和这些荧光参数改变的程度与该品种的已知抗冷性之间呈现较好的相关性。我们认为,体内叶绿素a荧光诱导动力学方法是鉴定番茄抗冷性的一个快速、灵敏和可靠的方法,并可用于其他绿色植物的抗冷性鉴定中。  相似文献   

5.
The relationships between light-harvesting chlorophyll and reaction centers in Photosystem II were analyzed during the chloroplast development of dark-grown, non-dividing Euglena gracilis Z. Comparative measurements included light saturation of photosynthesis, oxygen evolution under flashing-light and fluorescence induction. The results obtained can be summarized as follows: (1) Photosystem II photocenters are formed in parallel with chlorophyll synthesis, but after a long lag phase. (2) As a consequence, the chlorophyll reaction center ratio (Emerson's type photosynthetic unit) decreases during greening. (3) This decrease is accompanied by considerable changes in the energy transfer and trapping properties of Photosystem II. Most of the initially synthesized chlorophylls are inactive in the transfer of excitations to active photochemical centers and are shared among newly formed Photosystem II photocenters; as a consequence, the number of chlorophylls functionally connected to each Photosystem II photocenter decreases and cooperatively between these centers appears. Results are discussed in terms of chlorophyll organization in developing photosynthetic membranes with reference to the lake or puddle models of photosynthetic unit organization.  相似文献   

6.
Tissue biosensors made from immobilized whole-cell photosynthetic microorganisms have been developed for the detection of airborne chemical warfare agents and simulants. The sensor read-out is based on well-known principles of fluorescence induction by living photosynthetic tissue. Like the cyanobacteria and algae from which they were constructed, the sensors are robust and mobile. The fluorescence signal from the sensors was stable after 40 days, storage and they can be launched or dropped into suspected danger zones. Commercially available hand-held fluorometric detector systems were used to measure Photosystem II (PSII) photochemical efficiency of green algae and cyanobacteria entrapped on filter paper disks. Toxic agents flowing in the gas stream through the sensors can alter the characteristic fluorescence induction curves with resultant changes in photochemical yields. Tabun (GA), sarin (GB), mustard agent, tributylamine (TBA) (a sarin stabilizer), and dibutyl sulfide (DBS) (a mustard agent analog) were tested. Upper threshold limits of detectability for GA, TBA, and DBS are reported. With additional research and development, these biosensors may find application in stand-off detection of chemical and perhaps biological warfare agents under real-world conditions.  相似文献   

7.
Bryophytes are the transitional forms from water habitants to terrestrials, however, there have been only a few works on their photosynthesis. It was the first time to study on photosynthetic fluorescence spectra and fluorescence kinetics of primitive and advanced species comparatively. Both the primitive and advanced ones had the same fluorescence spectra at room temperature, which contained two maximum emissions: F686-690 from the Photosystem II and F736-740 from the Photosystem I. And then, there were three maximum emissions in the fluorescence spectra at 77K :F687-689 and F697-699 from Photosystem II, and F723-734 from Photosystem I. The first two maximum emissions were the same for both the primitive and advanced species. According to the third maximum emission the bryophytes under study fell into two categories: The first one possessing the maximum emission around 725 nm, including Ditrichum flexicaule , Didymodon icmadophyllum , Didymodon rigidicaulis, Aloina obliquifolia, Plagiomnium confertidens and Marchantia polymorpha, which were primitive mosses and advanced liverwort. The second one possessing the maximum emission around 732nm, including Thuidium delicatulum , Pylaisia brotheri , Myuroclada maximowiczii , Taxiphyllum taxirameum, Gollania neckerella, Eurohypnum leptothallum, which were advanced mosses, and the primitive one Plagiomnium rostratum. The characteristics of fluorescence spectra implied that the Photosystem II was conservative and Photosystem I was changeable during bryophyte evolution. The primitive mosses possess mainly the PSI core complex (CPI) and then the advanced species contain both CPI and LHC-I. In analysis of photosynthetic fluorescence kinetics, Fv/(Fc+Fv) is a measure of the activity of the Photosystem II; Fv/Fm is dependent on efficiency of primary photoconversion in the Photosystem II; Fm/(Fo+Fv) is related to photosynthetic carbon assimilation; and Fd/Fs is a measure of the potential photosynthetic quantum conversion. The fluorescence kinetics of the bryophyte photosynthesis showed that the Photosystem II activity, the efficieiency of primary photoconversion in Photosystem II, the photosynthetic carbon assimilation and the efficiency of the potential photosynthetic quantum conversion in primitive species, such as Ditrichum flexicaule, Didymodon icmadophyllus, D. rigidicaulis, Plagiomnium rostratum and the liverwort Marchantia polymorpha, were lower than those in the advanced species, Myuroclada maximowiczii, Pylaisia brotheri , Gollania neckerella Taxiphyllum taxirameum , Thuidium delicatulum. However, the primitive Plagiomnium confertidens was of the high activities and efficiencies and the advanced Eurohypnum leptothallum was of low ones. It seemed that P. confertidens and E. leptothallum were an intermediatefrom the primitive to the advanced.  相似文献   

8.
G. Dubertret  M. Lefort-Tran 《BBA》1978,503(2):316-332
The relationships between light-harvesting chlorophyll and reaction centers in Photosystem II were analyzed during the chloroplast development of dark-grown, non-dividing Euglena gracilis Z. Comparative measurements included light saturation of photosynthesis, oxygen evolution under flashing-light and fluorescence induction. The results obtained can be summarized as follows: (1) Photosystem II photocenters are formed in parallel with chlorophyll synthesis, but after a longer lag phase. (2) As a consequence, the chlorophyll: reaction center ratio (Emerson's type photosynthetic unit) decreases during greening. (3) This decrease is accompanied by considerable changes in the energy transfer and trapping properties of Photosystem II. Most of the initially synthesized chlorophylls are inactive in the transfer of excitations to active photochemical centers and are shared among newly formed Photosystem II photocenters; as a consequence, the number of chlorophylls functionally connected to each Photosystem II photocenter decreases and cooperativity between these centers appears. Results are discussed in terms of chlorophyll organization in developing photosynthetic membranes with reference to the lake or puddle models of photosynthetic unit organization.  相似文献   

9.
Registration of chlorophyll fluorescence induction curves (IC) from individual microalgae cenobiums was performed during Scenedesmus quadricauda culture growth. Emphasis was placed on the analysis of patterns of the slow phase of IC, since these slow fluorescence transitions reflect complex interactions between primary and secondary photosynthetic processes. A classification was performed of the ICs obtained according to the patterns of their slow phase. Four different types of such patterns were distinguished. The microalgae population structure with respect to IC patterns was investigated at different stages of culture growth. The distribution of microalgae cenobiums over the patterns of IC was found to change in accordance with the stage of population development. At the stage of the population growth enhancement, nonmonotonous IC dominated with a high steady-state level of fluorescence. The stage of linear growth was characterized by IC with monotonous decay kinetics and low steady-state level of fluorescence. At the third stage including the phases of growth inhibition, stationary state and the beginning of cell death the population structure was the most heterogeneous, with all IC patterns observed.Abbreviations CO2 carbon dioxide - ETC electron transfer chain - Fl fluorescence - FNR ferredoxin-NADPH reductase - IC induction curve of chlorophyll fluorescence - PQ plastoquinone - PS I Photosystem I - PS II Photosystem II - QA primary quinone acceptor of PS II  相似文献   

10.
The photochemical activities and fluorescence properties of cells, spheroplasts and spheroplast particles from the blue-green alga Phormidium luridum were compared. The photochemical activities were measured in a whole range of wavelengths and expressed as quantum yield spectra (quantum yield vs. wavelength). The following reactions were measured. Photosynthesis (O2 evolution) in whole cells; Hill reaction (O2 evolution) with Fe(CN)63- and NADP as electron acceptors (Photosystem II and photosystem II + Photosystem I reactions); electron transfer from reduced 2,6-dichlorophenolindophenol to diquat (Photosystem I reaction). The fluorescence properties were emission spectra, quantum yield spectra and the induction pattern. On the basis of comparison between the quantum yield spectra and the pigments compositions the relative contribution of each pigment to each photosystem was estimated. In normal cells and spheroplasts it was found that Photosystem I (Photosystem II) contains about 90% (10%) of the chlorophyll a, 90% (10%) of the carotenoids and 15% (85%) of the phycocyanin. In spheroplast particles there is a reorganization of the pigments; they loose a certain fraction (about half) of the phycocyanin but the remaining phycocyanin attaches itself exclusively to Photosystem I (!). This is reflected by the loss of Photosystem II activity, a flat quantum yield vs. wavelength dependence and a loss of the fluorescence induction. The fluorescence quantum yield spectra conform qualitatively to the above conclusion. More quantitative estimation shows that only a fraction (20--40%) of the chlorophyll of Photosystem II is fluorescent. Total emission spectrum and the ratio of variable to constant fluorescence are in agreement with this conclusion. The fluorescence emission spectrum shows characteristic differences between the constant and variable components. The variable fluorescence comes exclusively from chlorophyll a; the constant fluorescence is contributed, in addition to chlorophyll a, by phycocyanine and an unidentified long wavelength component. The variable fluorescence does not change in the transition from whole cells to spheroplasts. However, the constant fluorescence increases considerably. This indicates the release of a small fraction of pigments from the photosynthetic photochemical apparatus which then become fluorescent.  相似文献   

11.
Picosecond fluorescence kinetics of pea chloroplasts have been investigated at room temperature using a pulse fluorometer with a resolution time of 10-11 s. Fluorescence has been excited by both a ruby and neodymium-glass mode-locked laser and has been reocrded within the 650 to 800 nm spectral region. We have found three-component kinetics of fluorescence from pea chloroplasts with lifetimes of 80, 300 and 4500 ps, respectively. The observed time dependency of the fluorescence of different components on the functional state of the photosynthetic mechanism as well as their spectra enabled us to conclude that Photosystem I fluoresces with a lifetime of 80 ps (tauI) and Photosystem II fluoresces with a lifetime of 300 ps (tauII). Fluorescence with a lifetime of 4500 ps (tauIII) may be interpreted as originating from chlorophill monomeric forms which are not involved in photosynthesis. It was determined that the rise time of Photosystem I and Photosystem II fluorescence after 530 nm photoexcitation is 200 ps, which corrsponds to the time of energy migration to them from carotenoids.  相似文献   

12.
Chlorella was used to study the effects of dehydration on photosynthetic activities. The use of unicellular green algae assured that the extent of dehydration was uniform throughout the whole cell population during the course of desiccation. Changes in the activities of the cells were monitored by measurements of fluorescence induction kinetics. It was found that inhibition of most of the photosynthetic activities started at a similar level of cellular water content. They included CO2 fixation, photochemical activity of Photosystem II and electron transport through Photosystem I. The blockage of electron flow through Photosystem I was complete and the whole transition occurred within a relative short time of dehydration. On the other hand, the suppression of Photosystem II activity was incomplete and the transition took a longer time of dehydration. Upon rehydration, the inhibition of Photosystem II activity was fully reversible when samples were in the middle of the transition, but was not thereafter. The electron transport through Photosystem I was also reversible during the transition, but was only partially afterward.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fm maximum fluorescence yield - F0 non-variable fluorescence level emitted when all PS II centers are open - Fv variable part of fluorescence - PS photosystem - QA primary quinone acceptor of Photosystem II  相似文献   

13.
Chlorophyll fluorescence induction curves of toxic and non-toxic strains of the cyanobacterium Nodularia were measured and compared with fluorescence curves measured from four species of eukaryotic algae. Both cyanobacteria and algae were isolated from the Baltic Sea. The results show that Nodularia strains can be distinguished from the eukaryotes by applying a pattern recognition procedure to the fluorescence induction curves, suggesting that the fluorescence fingerprinting technique might be useful in environmental monitoring of marine algae. The six studied Nodularia strains could not be distinguished from each other from their fluorescence induction kinetics. However, their fluorescence curves fell into two clear categories, the toxic and the non-toxic Nodularia. Emission spectroscopy and differences in the fluorescence induction curves showed that the ratio of the intensity of the Photosystem I emission peak to the Photosystem II peak is higher in non-toxic Nodularia than in the toxic strains, suggesting that the toxicity affects the structure of the photosynthesis machinery. The effect on photosynthesis may be related to the ability of the microcystins to chelate iron.  相似文献   

14.
A model for the photochemical apparatus of photosynthesis is presented which accounts for the fluorescence properties of Photosystem II and Photosystem I as well as energy transfer between the two photosystems. The model was tested by measuring at - 196 degrees C fluorescence induction curves at 690 and 730 nm in the absence and presence of 5mMMgCl2 which presumably changes the distrubution of excitation energy between the two photosystems. The equations describing the fluorescence properties involve terms for the distribution of absorbed quanta, alpha, being the fraction distributed to Photosystem I, and beta, the fraction to Photosystem II to Photosystem I, KT(II yields I). The data, analyzed within the context of the model, permit a direct comparison of alpha and kt(II yields I) in the absence (minus) and presence (+) of Mg-2+ :alpha minus/alpha-+ equals 1.2 and k-minus t)II yields I)/K-+T(II yields I) equal to 1.9. If the criterion that alpha + beta equal to 1 is applied absolute values can be calculated: in the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied the presence of Mg-2+, alpha-+ equal to 0.27 and the yield of energy transfer, phi-+ t(II yields I) varied from 0.065 when the Photosystem II reaction centers were all open to 0.23 when they were closed. In the absence of Mg-2+, alpha-minus equal to 0.32 and phi t(II yields I) varied from 0.12 to 0.28. The data were also analyzed assuming that two types of energy transfer could be distinguished; a transfer from the light-harvesting chlorophyll of Photosystem II to Photosystem I, kt(II yields I), and a transfer from the reaction centers of Photosystem II to Photosystem I, kt(II yields I). In that case alpha-minus/alpha+ equal to 1.3, k-minus t(II yields I)/k+ t(II yields I)equal to 1.3 and k-minus t(II yields I) equal to 3.0. It was concluded, however, that both of these types of energy transfer are different manifestations of a single energy transfer process.  相似文献   

15.
Intact leaves of Phascolus mdgaris were illuminated with strongblue light to induce a transition of pigment states from a highfluorescent state (State I) to a low fluorescent state (StateII), and their fluorescence induction curves were measured atroom temperature and low temperature. The induction curves at –196°C were measured at 692and 730 nm in order to investigate the states of PhotosystemII and Photosystem I separately. At 692 nm, the leaves in StateII showed one level of fluorescence without any variation, Fs,which was approximately the same as the initial Fo level inState I. At 730 nm, however, the Fs level was rather close tothe maximal FM level in State I. These results are discussed according to the model of photochemicalapparatus of photosynthesis proposed previously and interpretedthat the excitation energy is transferred directly from thereaction centers of Photosystem II to Photosystem I. (Received April 2, 1976; )  相似文献   

16.
Elisha Tel-Or  Shmuel Malkin 《BBA》1977,459(2):157-174
The photochemical activities and fluorescence properties of cells, spheroplasts and spheroplast particles from the blue-green alga Phormidium luridum were compared. The photochemical activities were measured in a whole range of wavelengths and expressed as quantum yield spectra (quantum yield vs. wavelength). The following reactions were measured: Photosynthesis (O2 evolution) in whole cells; Hill reaction (O2 evolution) with Fe(CN)63? and NADP as electron acceptors (Photosystem II and Photosystem II+Photosystem I reactions); electron transfer from reduced 2,6-dichlorophenolindophenol to diquat (Photosystem I reaction). The fluorescence properties were emission spectra, quantum yield spectra and the induction pattern.On the basis of comparison between the quantum yield spectra and the pigments compositions the relative contribution of each pigment to each photosystem was estimated. In normal cells and spheroplasts it was found that Photosystem I (Photosystem II) contains about 90 % (10 %) of the chlorophyll a, 90 % (10 %) of the carotenoids and 15 % (85 %) of the phycocyanin. In spheroplast particles there is a reorganization of the pigments: they loose a certain fraction (about half) of the phycocyanin but the remaining phycocyanin attaches itself exclusively to Photosystem I (!). This is reflected by the loss of Photosystem II activity, a flat quantum yield vs. wavelength dependence and a loss of the fluorescence induction.The fluorescence quantum yield spectra conform qualitatively to the above conclusion. More quantitative estimation shows that only a fraction (20–40 %) of the chlorophyll of Photosystem II is fluorescent. Total emission spectrum and the ratio of variable to constant fluorescence are in agreement with this conclusion.The fluorescence emission spectrum shows characteristic differences between the constant and variable components. The variable fluorescence comes exclusively from chlorophyll a; the constant fluorescence is contributed, in addition to chlorophyll a, by phycocyanine and an unidentified long wavelength component.The variable fluorescence does not change in the transition from whole cells to spheroplasts. However, the constant fluorescence increases considerably. This indicates the release of a small fraction of pigments from the photosynthetic photochemical apparatus which then become fluorescent.  相似文献   

17.
G. Dubertret  P. Joliot 《BBA》1974,357(3):399-411
The formation and the organization of Photosystem II photosynthetic units during the greening of a dark-grown Chlorella vulgaris, mutant 5/520, have been investigated by analysing the kinetics of the “activation” of oxygen evolution and of the fluorescence induction.

1. 1. The existence during the early stages of the greening of a stationary photosynthesis demonstrates the presence of active Photosystem II at these initial stages, which are integrated in a functional whole, leading to overall photosynthesis.

2. 2. The rise-time of oxygen evolution has been measured using far-red and green light in order to estimate the relative number of chlorophylls per unit. The amount of chlorophyll a remains relatively constant during the greening, while the progressive addition of chlorophyll b causes the size of the units to increase approx. 2-fold.

3. 3. The induction kinetics of the fluorescence are exponential during the early phases of greening and later become distinctly sigmoidal; this suggests that the first units synthesized on the surface of the membrane are isolated from each other by obstacles preventing electronic excitation transfers and that such obstacles which might correspond to some distance between such units, can disappear at later stages, allowing energy transfers to occur.

These observations suggest that the Photosystem II units represent organized functional entities. They apparently consist of a relatively constant number of chlorophyll a molecules, which during the greening is complemented progressively by the addition of chlorophyll b.  相似文献   


18.
Peter H. Homann 《BBA》1968,162(4):545-554
1. The kinetics of the fluorescence induction are described for chloroplasts from normal green tobacco, from the aurea tobacco mutant Su/su, from the photosynthetically inactive yellow patches of a variegated tobacco, and from tobacco plants grown in absence of manganese. The first two types display the well-known biphasic induction, but the Su/su chloroplasts have a distinctly slower rise time. Manganese deficient chloroplasts show a significantly higher fluorescence yield than any other type of chloroplasts studied. The kinetics of their fluorescence, on the other hand, are similar to those observed with the inactive chloroplasts from the variegated tobacco: the fluorescence rise is small, and the fluorescence yield is not changed very much by the addition of a reducing agent like hydrosulfite, or by addition of an oxidant like ferricyanide, or by an inhibition of the electron flow in Photosystem II with 3(3,4-dichlorophenyl)-1,1-dimethylurea.

2. Determinations of the amount of the primary electron acceptors associated with Photosystem II point to a 2- to 3-fold larger electron acceptor pool in chloroplasts of young Su/su plants than in chloroplasts of old Su/su plants and of various green leaves, including those from green tobacco. This finding agrees with recently published data on the size of the photosynthetic unit in tobacco mutants and normal green plants.

3. The different fluorescence characteristics of all four types of chloroplasts under study are discussed on the basis of their structure and their activity in photosynthetic O2 evolution.  相似文献   


19.
Picosecond fluorescence kinetics of pea chloroplasts have been investigated at room temperature using a pulse fluorometer with a resolution time of 10?11 s. Fluorescence has been excited by both a ruby and neodymium-glass mode-locked laser and has been recorded within the 650 to 800 nm spectral region.We have found three-component kinetics of fluorescence from pea chloroplasts with lifetimes of 80, 300 and 4500 ps, respectively. The observed time dependency of the fluorescence of different components on the functional state of the photosynthetic mechanism as well as their spectra enabled us to conclude that Photosystem I fluoresces with a lifetime of 80 ps (τI) and Photosystem II fluoresces with a lifetime of 300 ps (τII). Fluorescence with a lifetime of 4500 ps (τIII) may be interpreted as originating from chlorophyll monomeric forms which are not involved in photosynthesis.It was determined that the rise time of Photosystem I and Photosystem II fluorescence after 530 nm photoexcitation is 200 ps, which corresponds to the time of energy migration to them from carotenoids.  相似文献   

20.
Shmuel Malkin  Jim Barber 《BBA》1978,502(3):524-541
1. Using a phosphoroscope, delayed luminescence and prompt chlorophyll fluorescence from isolated chloroplasts have been compared during the induction period.2. Two distinct decay components of delayed luminescence were measured a “fast” component (from ≈1 ms to ≈6 ms) and a “slow” component (at ≈6 ms).3. The fast luminescence component often did not correlate with the fluorescence changes while the slow component significantly changed its intensity during the induction period in a manner which could usually be linearly correlated with variable portion of the fluorescence yield change.4. This correlation was evident after preillumination with far-red light or after allowing a considerable time for dark relaxation.5. The close relationship between the slow luminescence component and variable fluorescence yield was observed with a large range of light intensities and also in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea which considerably changes the fluorescence induction kinetics.6. Valinomycin and other antibiotics reduced the amplitude of the 6 ms (slow) luminescence without affecting its relation with the fluorescence induction suggesting possibly that a constant electrical gradient exist in the dark or formed very rapidly in the light, which effects the emission intensity.7. Changes in salt levels of suspending media equally affected the amplitude of both delayed luminescence and variable fluorescence under conditions when the reduction of Q is maximal and constant.8. The results are discussed in terms of several models. It is concluded that the model of independent Photosystem II units together with photosynthetic back reaction concept is incompatible with the data. Other alternative models (the “lake” model and photosynthetic back reaction; recombination of charges in the antenna chlorophyll; the “W” hypothesis) were in closer agreement with the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号