首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular and cellular characterization of transferrin receptor 2   总被引:1,自引:0,他引:1  
Iron is an essential component of many biological processes. However, an excess of iron in the body is also toxic; thus, the levels of this element are tightly regulated. Our knowledge of the mechanism by which iron levels are maintained has been bolstered by the dramatic increase in the discovery of novel molecules implicated in iron homeostasis. The transferrin receptor-transferrin pathway is the main mechanism by which cells take up iron. The recently identified homolog of transferrin receptor, its characterization and its role in iron metabolism is the subject of this review.  相似文献   

2.
Iron is an essential element for human development. It is a major requirement for cellular processes such as oxygen transport, energy metabolism, neurotransmitter synthesis, and myelin synthesis. Despite its crucial role in these processes, iron in the ferric form can also produce toxic reactive oxygen species. The duality of iron’s function highlights the importance of maintaining a strict balance of iron levels in the body. As a result, organisms have developed elegant mechanisms of iron uptake, transport, and storage. This review will focus on the mechanisms that have evolved at physiological barriers, such as the intestine, the placenta, and the blood–brain barrier (BBB), where iron must be transported. Much has been written about the processes for iron transport across the intestine and the placenta, but less is known about iron transport mechanisms at the BBB. In this review, we compare the established pathways at the intestine and the placenta as well as describe what is currently known about iron transport at the BBB and how brain iron uptake correlates with processes at these other physiological barriers.  相似文献   

3.
4.
Iron plays an essential role in cellular metabolism and biological processes. However, due to its intrinsic redox activity, free iron is a potentially toxic molecule in cellular biochemistry. Thus, organisms have developed sophisticated ways to import, sequester, and utilize iron. The transferrin cycle is a well-studied iron uptake pathway that is important for most vertebrate cells. Circulating iron can also be imported into cells by mechanisms that are independent of transferrin. Once imported into erythroid cells, iron is predominantly consumed by the mitochondria for the biosynthesis of heme and iron sulfur clusters. This review focuses on canonical transferrin-mediated and the newly discovered, non-transferrin mediated iron uptake pathways, as well as, mitochondrial iron homeostasis in higher eukaryotes. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

5.
Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in the acquisition or distribution of the metal causes anemia, whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways as well as in mechanisms underlying intracellular iron trafficking, an important but less studied area of mammalian iron homeostasis.  相似文献   

6.
Iron is essential for the growth and proliferation of cells, as well as for many biological processes that are important for the maintenance and survival of the human body. However, excess iron is associated with the development of cancer and other pathological conditions, due in part to the pro-oxidative nature of iron and its damaging effects on DNA. Current studies suggest that iron depletion may be beneficial for patients that have diseases associated with iron overload or other iron metabolism disorders that may increase the risk for cancer. On the other hand, studies suggest that cancer cells are more vulnerable to the effects of iron depletion and oxidative stress in comparison to normal cells. Therefore, cancer patients might benefit from treatments that alter both iron metabolism and oxidative stress. This review highlights the pro-oxidant effects of iron, the relationship between iron and cancer development, the vulnerabilities of the iron-dependent cancer phenotype, and how these characteristics may be exploited to prevent or treat cancer.  相似文献   

7.
Iron dysregulation and neurodegeneration: the molecular connection   总被引:5,自引:0,他引:5  
Iron is essential for many biological processes however excess concentrations can be harmful to many tissues. Its amounts must therefore be carefully regulated in all cells of the body including those in the brain. Increased amounts of iron have been reported in many neurodegenerative disorders. Whether this increased iron contributes to neurodegeneration has been considered controversial. In this review, we discuss some recently identified anomalies in proteins linked with iron metabolism which signify a critical role for iron dysregulation in neurodegeneration.  相似文献   

8.
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.  相似文献   

9.
Iron is required for appropriate behavioral organization. Iron deficiency results in poor brain myelination and impaired monoamine metabolism. Glutamate and γ-aminobutyric acid homeostasis is modified by changes in brain iron status. Such changes produce not only deficits in memory/learning capacity and motor skills, but also emotional and psychological problems. An accumulating body of evidence indicates that both energy metabolism and neurotransmitter homeostasis influence emotional behavior, and both functions are influenced by brain iron status. Like other neurobehavioral aspects, the influence of iron metabolism on mechanisms of emotional behavior is multifactorial: brain region-specific control of behavior, regulation of neurotransmitters and associated proteins, temporal and regional differences in iron requirements, oxidative stress responses to excess iron, sex differences in metabolism, and interactions between iron and other metals. To better understand the role that brain iron plays in emotional behavior and mental health, this review discusses the pathologies associated with anxiety and other emotional disorders with respect to body iron status.  相似文献   

10.
Iron is an important cofactor required for a number of essential cell functions and hence is a vital nutrient. However, iron can also be dangerous as a catalyst of free radical reactions. Accordingly, intracellular iron homeostasis and body iron balance are tightly regulated. In this review, we presented an overview of the remarkable new insights that over the last years have been gained into the multifaceted and sophisticated molecular mechanisms controlling iron acquisition, storage and release. We also reviewed the data about nutrition-related abnormalities of iron metabolism, such as iron overload and deficiency. Finally, we discussed how pathogenic microorganisms and host cells compete for iron, a battle whose outcome has a relevant role in infectious disease.  相似文献   

11.
Chemistry and biology of eukaryotic iron metabolism   总被引:13,自引:0,他引:13  
With rare exceptions, virtually all studied organisms from Archaea to man are dependent on iron for survival. Despite the ubiquitous distribution and abundance of iron in the biosphere, iron-dependent life must contend with the paradoxical hazards of iron deficiency and iron overload, each with its serious or fatal consequences. Homeostatic mechanisms regulating the absorption, transport, storage and mobilization of cellular iron are therefore of critical importance in iron metabolism, and a rich biology and chemistry underlie all of these mechanisms. A coherent understanding of that biology and chemistry is now rapidly emerging. In this review we will emphasize discoveries of the past decade, which have brought a revolution to the understanding of the molecular events in iron metabolism. Of central importance has been the discovery of new proteins carrying out functions previously suspected but not understood or, more interestingly, unsuspected and surprising. Parallel discoveries have delineated regulatory mechanisms controlling the expression of proteins long known--the transferrin receptor and ferritin--as well as proteins new to the scene of iron metabolism and its homeostatic control. These proteins include the iron regulatory proteins (IRPs 1 and 2), a variety of ferrireductases in yeast an mammalian cells, membrane transporters (DMT1 and ferroportin 1), a multicopper ferroxidase involved in iron export from cells (hephaestin), and regulators of mitochondrial iron balance (frataxin and MFT). Experimental models, making use of organisms from yeast through the zebrafish to rodents have asserted their power in elucidating normal iron metabolism, as well as its genetic disorders and their underlying molecular defects. Iron absorption, previously poorly understood, is now a fruitful subject for research and well on its way to detailed elucidation. The long-sought hemochromatosis gene has been found, and active research is underway to determine how its aberrant functioning results in disease that is easily controlled but lethal when untreated. A surprising connection between iron metabolism and Friedreich's ataxia has been uncovered. It is no exaggeration to say that the new understanding of iron metabolism in health and disease has been explosive, and that what is past is likely to be prologue to what is ahead.  相似文献   

12.
Iron is an essential trace metal in the human diet because of its role in a number of metabolic processes including oxygen transport. In the diet, iron is present in two fundamental forms, heme and non-heme iron. This article presents a brief overview of the molecular mechanisms of intestinal iron absorption and its regulation. While many proteins that orchestrate iron transport pathway have been identified, a number of key factors that control the regulation of iron absorption still remain to be elucidated. This review also summarizes new and emerging information about iron metabolic regulators that coordinate regulation of intestinal iron absorption.  相似文献   

13.
In the theater of cellular life, iron plays an ambiguous and yet undoubted lead role. Iron is a ubiquitous core element of the earth and plays a central role in countless biochemical pathways. It is integral to the catalysis of the redox reactions of oxidative phosphorylation in the respiratory chain, and it provides a specific binding site for oxygen in the heme binding moiety of hemoglobin, which allows oxygen transport in the blood. Its biological utility depends upon its ability to readily accept or donate electrons, interconverting between its ferric (Fe3+) and ferrous (Fe2+) forms. In contrast to these beneficial features, free iron can assume a dangerous aspect catalyzing the formation of highly reactive compounds such as cytotoxic hydroxyl radicals that cause damage to the macromolecular components of cells, including DNA and proteins, and thereby cellular destruction. The handling of iron in the body must therefore be very carefully regulated. Most environmental iron is in the Fe3+ state, which is almost insoluble at neutral pH. To overcome the virtual insolubility and potential toxicity of iron, a myriad of specialized transport systems and associated proteins have evolved to mediate regulated acquisition, transport, and storage of iron in a soluble, biologically useful, non-toxic form. We are gradually beginning to understand how these proteins individually and in concert serve to maintain cellular and whole body homeostasis of this crucial yet potentially harmful metal ion. Furthermore, studies are increasingly implicating iron and its associated transport in specific pathologies of many organs. Investigation of the transport proteins and their functions is beginning to unravel the detailed mechanisms underlying the diseases associated with iron deficiency, iron overload, and other dysfunctions of iron metabolism.  相似文献   

14.
铁是绝大多数生物生长和代谢过程中必需的营养元素。尽管自然界中铁元素含量非常丰富,但是其生物可利用性却很低。作为一种人体常见的条件致病真菌,白念珠菌在漫长的进化过程中形成了复杂的铁稳态调控网络,能够应答环境中铁浓度的变化,增强菌株对环境的适应力。结合课题组研究工作,简要综述近几年关于铁代谢表达调控途径的研究进展,主要关注白念珠菌在环境铁匮乏条件下铁获得和调控策略,揭示白念珠菌体内铁离子摄取、转运、储存和利用机制。  相似文献   

15.
Iron in blood cells has several physiological functions like transporting oxygen to cells and maintaining iron homeostasis. Iron is primarily contained in red blood cells (RBCs), but monocytes also store iron as these cells are responsible for the recycling of senescent RBCs. Iron also serves an important role related to the function of different leukocytes. In inflammation, iron homeostasis is dependent on cytokines derived from T cells and macrophages. Fluctuations of iron content in the body lead to different diseases. Iron deficiency, which is also known as anemia, hampers different physiological processes in the human body. On the other hand, genetic or acquired hemochromatosis ultimately results in iron overload and leads to the failure of different vital organs. Different diagnoses and treatments are developed for these kinds of disorders, but the majority are costly and suffer from side effects. To address this issue, magnetophoresis could be an attractive technology for the diagnosis (and in some cases treatment) of these pathologies due to the paramagnetic character of the cells containing iron. In this review, we discuss the main functions of iron in blood cells and iron-related diseases in humans and highlight the potential of magnetophoresis for diagnosing and treating some of these disorders.  相似文献   

16.
铁离子是大多数细菌生存所必需的营养物质,但是过多的铁离子通过芬顿反应产生的活性氧(reactive oxygen species, ROS)对细菌造成损伤。因此,细菌必须严格控制体内铁离子浓度。铁摄取调节子(ferric uptake regulator,Fur)是细菌铁离子代谢中最重要的调节子。Fur通过抑制或者激活基因的转录,来调节与铁摄取、利用和储存相关的基因,维持胞内铁离子浓度动态平衡。此外,Fur还参与细菌的氧化应激、抗酸能力、毒力和能量代谢等多种生物过程的调节。本文对Fur参与的生物过程及调节机制进行介绍,以期为进一步研究其他细菌Fur的调节机制,以及Fur在细菌应对环境变化中所起作用提供参考。  相似文献   

17.
18.
Iron is essential for all known life due to its redox properties; however, these same properties can also lead to its toxicity in overload through the production of reactive oxygen species. Robust systemic and cellular control are required to maintain safe levels of iron, and the liver seems to be where this regulation is mainly located. Iron misregulation is implicated in many diseases, and as our understanding of iron metabolism improves, the list of iron-related disorders grows. Recent developments have resulted in greater knowledge of the fate of iron in the body and have led to a detailed map of its metabolism; however, a quantitative understanding at the systems level of how its components interact to produce tight regulation remains elusive. A mechanistic computational model of human liver iron metabolism, which includes the core regulatory components, is presented here. It was constructed based on known mechanisms of regulation and on their kinetic properties, obtained from several publications. The model was then quantitatively validated by comparing its results with previously published physiological data, and it is able to reproduce multiple experimental findings. A time course simulation following an oral dose of iron was compared to a clinical time course study and the simulation was found to recreate the dynamics and time scale of the systems response to iron challenge. A disease state simulation of haemochromatosis was created by altering a single reaction parameter that mimics a human haemochromatosis gene (HFE) mutation. The simulation provides a quantitative understanding of the liver iron overload that arises in this disease. This model supports and supplements understanding of the role of the liver as an iron sensor and provides a framework for further modelling, including simulations to identify valuable drug targets and design of experiments to improve further our knowledge of this system.  相似文献   

19.
Iron is an essential metal for most biological organisms. However, if not tightly controlled, iron can mediate the deleterious oxidation of biomolecules. This review focuses on the current understanding of the role of iron in the deleterious oxidation of various biomolecules, including DNA, protein, lipid, and small molecules, e.g., ascorbate and biogenic amines. The effect of chelation on the reactivity of iron is also addressed, in addition to iron-associated toxicities. The roles of the iron storage protein ferritin as both a source of iron for iron-mediated oxidations and as a mechanism to safely store iron in cells is also addressed.  相似文献   

20.
Regulation of cellular iron metabolism   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号