首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the development of anti-interferon (IFN)-α neutralizing antibodies (NAbs) is likely to be a common clinical problem for patients with various diseases treated with IFN, anti-IFN-α NAb has been exceptionally considered to have no clinical significance in the treatment of chronic hepatitis C with pegylated IFN-α (Peg-IFN-α). However, we recently clarified that the presence of NAb was associated with a non-response to the Peg-IFN plus ribavirin (RBV) therapy. In this study, we used the HCV-replicon system with genotype 1b, and investigated the role of anti-IFN-α NAb in the response to telaprevir (TVR)-containing new antiviral therapy for hepatitis C virus (HCV). Anti-IFN-α NAb-positive sera specifically inhibited the anti-HCV effects of IFN-α, without any effect on the activity of IFN-β in vitro. The NAb-positive sera also inhibited the IFN-α-dependent induction of interferon-stimulated genes, MxA and OAS-1, in a dose-dependent manner. Although TVR monotherapy decreased the HCV-RNA in vitro, the HCV-RNA was increased again with the development of TVR-resistant mutations. When IFN-α was administrated with TVR, the replication of HCV was continuously suppressed for more than a month. However, in the presence of anti-IFN-α NAb-positive sera, even when IFN-α was combined with TVR, the levels of HCV-RNA exhibited a time-course similar to that with TVR monotherapy, and HCV with TVR-resistant mutations emerged. In conclusion, our findings suggest that the presence of IFN-α NAb decreases the antiviral effects of IFN-α and may be related to the development of TVR-resistant mutated viruses.  相似文献   

2.
Interferon-β (IFN-β) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-β on the central nervous system (CNS) are not well understood. To determine whether IFN-β has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-β and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFNα/β receptor (IFNAR). In response to IFN-β treatment, no effect was observed on differentiation or proliferation. However, IFN-β treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-β treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-β can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.  相似文献   

3.
Although treatment of multiple sclerosis (MS) with the type I interferon (IFN) IFN-β lowers disease activity, the role of endogenous type I IFN in MS remains controversial. We studied CD4+ T cells and CD4+ T cell subsets, monocytes and dendritic cells by flow cytometry and analysed the relationship with endogenous type I IFN-like activity, the effect of IFN-β therapy, and clinical and magnetic resonance imaging (MRI) disease activity in MS patients. Endogenous type I IFN activity was associated with decreased expression of the integrin subunit CD49d (VLA-4) on CD4+CD26(high) T cells (Th1 helper cells), and this effect was associated with less MRI disease activity. IFN-β therapy reduced CD49d expression on CD4+CD26(high) T cells, and the percentage of CD4+CD26(high) T cells that were CD49d(high) correlated with clinical and MRI disease activity in patients treated with IFN-β. Treatment with IFN-β also increased the percentage of CD4+ T cells expressing CD71 and HLA-DR (activated T cells), and this was associated with an increased risk of clinical disease activity. In contrast, induction of CD71 and HLA-DR was not observed in untreated MS patients with evidence of endogenous type IFN I activity. In conclusion, the effects of IFN-β treatment and endogenous type I IFN activity on VLA-4 expression are similar and associated with control of disease activity. However, immune-activating effects of treatment with IFN-β may counteract the beneficial effects of treatment and cause an insufficient response to therapy.  相似文献   

4.
The ability of IFN-β to induce IL-10 production from innate immune cells is important for its anti-inflammatory properties and is believed to contribute to its therapeutic value in treating multiple sclerosis patients. In this study, we identified that IFN-β stimulates IL-10 production by activating the JAK1- and PI3K-signaling pathways. JAK1 activity was required for IFN-β to activate PI3K and Akt1 that resulted in repression of glycogen synthase kinase 3 (GSK3)-β activity. IFN-β-mediated suppression of GSK3-β promoted IL-10, because IL-10 production by IFN-β-stimulated dendritic cells (DC) expressing an active GSK3-β knockin was severely reduced, whereas pharmacological or genetic inhibition of GSK3-β augmented IL-10 production. IFN-β increased the phosphorylated levels of CREB and STAT3 but only CREB levels were affected by PI3K. Also, a knockdown in CREB, but not STAT3, affected the capacity of IFN-β to induce IL-10 from DC. IL-10 production by IFN-β-stimulated DC was shown to suppress IFN-γ and IL-17 production by myelin oligodendrocyte glycoprotein-specific CD4(+) T cells, and this IL-10-dependent anti-inflammatory effect was enhanced by directly targeting GSK3 in DC. These findings highlight how IFN-β induces IL-10 production and the importance that IL-10 plays in its anti-inflammatory properties, as well as identify a therapeutic target that could be used to increase the IL-10-dependent anti-inflammatory properties of IFN-β.  相似文献   

5.
Chronic activation of microglia is associated with retinal degeneration, which makes them a potential therapeutic target for retinal degenerative diseases including age-related macular degeneration (AMD). Interferon-beta (IFN-β) is a potent immune regulator, commonly used for the treatment of multiple sclerosis patients. We have previously shown that IFN-β prevents microgliosis and choroidal neovascularization in a laser model of wet AMD. Here, we hypothesized that microglia modulation via IFN-β may also dampen mononuclear phagocyte reactivity and thereby protect from retinal degeneration in a light-damage paradigm mimicking some features of dry AMD. BALB/cJ mice received intraperitoneal injections of 10,000 U IFN-β or vehicle every other day; starting at the day of exposure to 15,000 lux white light for 1 h. Systemic treatment with IFN-β partially enhanced IFN-α/β receptor (IFNAR) signaling in the retina and reduced the number of reactivated microglia in the subretinal space. However, four days after light damage neither decreased expression of complement factors nor rescue of retinal thickness was found. We conclude that IFNAR signaling modulate retinal microglia but cannot prevent strong retinal degeneration as elicited by acute white light damage.  相似文献   

6.
Therapeutic effect of interferon-β (IFN-β) treatment has been associated with modulation of the balance between Th1, Th17, Th2 and regulatory T (Treg) cells, whereas the impact of disease modifying drugs on Th9-immunity in multiple sclerosis (MS) has not been studied. To investigate the short-term effects of IFN-β treatment on cytokines in MS, we determined serum levels of IL-17, IL-23, IL-10, IL-4, IFN-γ, IL-9 and TGF-β in relapsing remitting MS patients before and 2 months after IFN-β treatment by ELISA. MS patients showed increased IL-17, IL-23 and IL-4 levels and decreased IL-9 levels as compared to healthy controls. IFN-β treatment only reduced IL-17 and IL-23 levels, whereas the levels of other cytokines remained unchanged. IFN-β treatment appears to exert its earliest therapeutic effect on Th17-immunity. The influence of IL-9 on MS pathogenesis needs to be further studied.  相似文献   

7.
8.
Type I interferons (IFN) comprise a family of cytokines that signal through a common cellular receptor to induce a plethora of genes with antiviral and other activities. Recombinant IFNs are used for the treatment of hepatitis C virus infection, multiple sclerosis, and certain malignancies. The capability of type I IFN to suppress virus replication and resultant cytopathic effects is frequently used to measure their bioactivity. However, these assays are time-consuming and require appropriate biosafety containment. In this study, an improved IFN assay is presented which is based on a recombinant vesicular stomatitis virus (VSV) replicon encoding two reporter proteins, firefly luciferase and green fluorescent protein. The vector lacks the essential envelope glycoprotein (G) gene of VSV and is propagated on a G protein-expressing transgenic cell line. Several mammalian and avian cells turned out to be susceptible to infection with the complemented replicon particles. Infected cells readily expressed the reporter proteins at high levels five hours post infection. When human fibroblasts were treated with serial dilutions of human IFN-β prior to infection, reporter expression was accordingly suppressed. This method was more sensitive and faster than a classical IFN bioassay based on VSV cytopathic effects. In addition, the antiviral activity of human IFN-λ (interleukin-29), a type III IFN, was determined on Calu-3 cells. Both IFN-β and IFN-λ were acid-stable, but only IFN-β was resistant to alkaline treatment. The antiviral activities of canine, porcine, and avian type I IFN were analysed with cell lines derived from the corresponding species. This safe bioassay will be useful for the rapid and sensitive quantification of multi-species type I IFN and potentially other antiviral cytokines.  相似文献   

9.
Multiple sclerosis (MS) is considered as a T cell mediated autoimmune disease of the CNS, although a pathogenic role has also been attributed to other immune cell types as well as to environmental and genetic factors. Considering that T cells are interesting from an immunopathogenic point of view and consequently from a therapeutic perspective, various T cell targeted therapies have been approved for MS. Interferon beta (IFN-β) is widely used as first-line intervention for modulating T cell responses, although its pleiotropic and multifaceted activities influence its effectiveness on the disease development, with mechanisms that are not yet fully understood. Since different T cell populations, including pro-inflammatory and regulatory T cells, might affect the course of MS, the effects of IFN-β become even more complex.This review will summarize recent findings regarding the T cell targeted effect of IFN-β in MS and its animal model EAE, with emphasis on the direct actions of endogenous and exogenous IFN-β on each T cell subpopulation involved in CNS autoimmunity.Delineating how IFN-β exerts its action on different T cell types may eventually contribute to the designing of therapeutic strategies aiming to improve the effectiveness of this drug for MS treatment.  相似文献   

10.
The development of novel protein therapeutics relies on the ability to express appreciable amounts of correctly folded recombinant proteins. Latent IFN-β is engineered using the latency-associated peptide (LAP) of transforming growth factor β1 (TGF-β1) to maintain IFN-β in a biologically inactive form until such time as it is released at sites of inflammation by matrix metalloproteinase activity (see Adams et al., 2003). CHO cells cultured in suspension were used for expression of latent IFN-β to allow medium scale transient transfection. However, the recombinant protein expressed in this system consisted of a mixture of properly linked disulphide dimers and monomers. The ratio of dimer:monomer produced could be significantly altered towards increased dimer production by the addition of l-cystine to the CHO culture medium. The total yield of latent IFN-β was increased by co-transfection of plasmid coding for the simian virus (SV) 40 large T antigen to the plasmid with the SV40 origin of replication expressing latent IFN-β DNA. These results provide valuable new insights for developing protocols to produce substantial quantities of latent cytokine dimers in CHO cells in suspension.  相似文献   

11.

Background

Neuromyelitis optica (NMO) is a severely disabling inflammatory disorder of the central nervous system and is often misdiagnosed as multiple sclerosis (MS). There is increasing evidence that treatment options shown to be beneficial in MS, including interferon-β (IFN-β), are detrimental in NMO.

Case presentation

We here report the first Caucasian patient with aquaporin 4 (AQP4) antibody (NMO-IgG)-seropositive NMO presenting with a tumefactive brain lesion on treatment with IFN-β. Disease started with relapsing optic neuritis and an episode of longitudinally extensive transverse myelitis (LETM) in the absence of any brain MRI lesions or cerebrospinal fluid-restricted oligoclonal bands. After initial misdiagnosis of multiple sclerosis (MS) the patient received subcutaneous IFN-β1b and, subsequently, subcutaneous IFN-β1a therapy for several years. Under this treatment, the patient showed persisting relapse activity and finally presented with a severe episode of subacute aphasia and right-sided hemiparesis due to a large T2 hyperintensive tumefactive lesion of the left brain hemisphere and a smaller T2 lesion on the right side. Despite rituximab therapy two further LETM episodes occurred, resulting in severe neurological deficits. Therapeutic blockade of the interleukin (IL)-6 signalling pathway by tocilizumab was initiated, followed by clinical and radiological stabilization.

Conclusion

Our case (i) illustrates the relevance of correctly distinguishing NMO and MS since these disorders differ markedly in their responsiveness to immunomodulatory and -suppressive therapies; (ii) confirms and extends a previous report describing the development of tumefactive brain lesions under IFN-β therapy in two Asian NMO patients; and (iii) suggests tocilizumab as a promising therapeutic alternative in highly active NMO disease courses.
  相似文献   

12.
Cathepsins are involved in a variety of physiological processes including antigen processing and presentation and extracellular matrix degradation. In the present study, we evaluated whether expression levels of cathepsins S and B and their inhibitors cystatins B and C are affected by multiple sclerosis (MS) disease state (relapse and remission) and therapies (interferon-β [IFN-β] and the glucocorticoid [GC] methylprednisolone), and whether they are associated with the IFN-β response phenotype. Real-time PCR was employed to compare RNA expression levels in peripheral blood leucocytes (PBLs) and ELISA to determine serum protein levels of MS patients and matched healthy individuals. Cathepsin S RNA was higher in MS patients in the relapse state compared to controls (by 74%, P = 3 × 10(-5), n = 30 versus n = 18) with a similar increase observed in serum (66%, P = 0.002, n = 18 versus n = 20). GC treatment reduced cathepsin S levels in PBL RNA (by 44%, P = 6 × 10(-6), n = 27) and serum proteins (by 27%, P = 1 × 10(-5), n = 26), reduced the serum protein levels of pro-cathepsin B (by 8%, P = 0.0007, n = 23), and in parallel increased the serum levels of their inhibitor cystatin C (by 82%, P = 8 × 10(-6), n = 26). IFN-β therapy significantly elevated the RNA levels (n = 16) of cathepsin B (by 16%, P = 0.03), cystatin B (44%, P = 0.004) and cystatin C (48%, P = 0.011). In the serum, only cathepsin S levels were reduced by IFN-β (16%, P = 0.006, n = 25). Interestingly, pre-treatment serum cathepsin S/cystatin C ratio was higher in 'good responders' to IFN-β therapy compared to patients without a good response (by 94%, P = 0.003). These results suggest that cathepsin S and cystatin C may contribute to disease activity in MS, specifically in a subgroup of patients that are responsive to IFN-β therapy, and that these proteins should be further evaluated as biomarkers in MS.  相似文献   

13.
IFN-β and the CD40L (CD154) share important roles in the antiviral and antitumor immune responses. In this study, we show that CD40 receptor occupancy results in IFN-β upregulation through an unconventional "feed-forward" mechanism, which is orchestrated by canonical NF-κB and involves the sequential de novo synthesis of IFN regulatory factor (IRF)1 and Viperin (RSAD2), an IRF1 target. RelA (p65) NF-κB, IRF1, and Viperin-dependent IRF7 binding to the IFN-β promoter largely controls its activity. However, full activation of IFN-β also requires the parallel engagement of noncanonical NF-κB2 signaling leading to p52 recruitment to the IFN-β promoter. These data define a novel link between CD40 signaling and IFN-β expression and provide a telling example of how signal propagation can be exploited to ensure efficient regulation of gene expression.  相似文献   

14.
15.
The tryptophan decyclizing enzyme indoleamine 2,3-dioxygenase (IDO) was induced in human monocyte-derived macrophages (MDM) treated with human recombinant interferon-β (IFN-β) or interferon-γ (IFN-γ). Treated cells exhibited dose-dependent increases in IDO when assayed 48 hr after treatment. Cells exposed to IFN-γ were observed to exhibit consistently higher peak levels of IDO when compared with cells incubated in the presence of IFN-β. When IFN-β-treated cells were incubated in the presence of specified amounts of bacterial lipopolysaccharide (LPS) or liposome-encapsulated muramyl tripeptide (MTP), peak IDO activity increased such that enzyme activity was comparable to maximal activity observed with IFN-γ-treated cells. LPS and MTP also upregulated IFN-γ-mediated IDO activity when suboptimal amounts of IFN-γ were used. When macrophages were costimulated with various concentrations of human recombinant interleukin 1α (IL-1α), along with either maximum-stimulating amounts of IFN-β or suboptimal amounts of IFN-γ, IDO activity was upregulated in a manner similar to results obtained using the microbial products as stimuli. While neither IL-1α or IL-1β was detected in culture supernatants from macrophages treated with either LPS or MTP (alone or in combination with IFN), IL-1α was detected in cell lysates of macrophages treated with these upregulators. Although neutralizing antibody to IL-1α abolished the upregulatory effect of exogenous IL-1α, it had no effect on upregulation by LPS or MTP. This suggests that although LPS and MTP may induce production of cell-associated IL-1α, upregulation of IDO activity by these agents is independent of IL-1α production and may be mediated through distinct pathways.  相似文献   

16.
Intratracheal administration of low molecular mass (LMM) hyaluronan (200 kDa) results in greater neutrophil infiltration in the lungs of TLR4(-/-) mice compared with that in wild-type mice. In general, enhanced neutrophil infiltration in tissue is due to cell influx; however, neutrophil apoptosis also plays an important role. We have assessed the effects of TLR4 in the regulation of neutrophil apoptosis in response to administration of LMM hyaluronan. We found that apoptosis of inflammatory neutrophils is impaired in TLR4(-/-) mice, an effect that depends upon the IFN-β-mediated TRAIL/TRAILR system. IFN-β levels were decreased in LMM hyaluronan-treated TLR4-deficient neutrophils. The treatment of inflammatory neutrophils with IFN-β enhanced the levels of TRAIL and TRAILR 2. LMM hyaluronan-induced inflammatory neutrophil apoptosis was substantially prevented by anti-TRAIL neutralizing mAb. We conclude that decreased IFN-β levels decrease the activity of the TRAIL/TRAILR system in TLR4-deficient neutrophils, leading to impaired apoptosis of neutrophils and resulting in abnormal accumulation of neutrophils in the lungs of LMM hyaluronan-treated mice. Thus, TLR4 plays a novel homeostatic role in noninfectious lung inflammation by accelerating the elimination of inflammatory neutrophils.  相似文献   

17.
Multiple sclerosis (MS) is an autoimmune disease with a spectrum of clinical evolutions. We here summarize recent insights into the neuroinflammatory processes of demyelination, vascular cuffing, destruction of the blood brain barrier (BBB), neuronal toxicity and the ensuing (re)activation of autoreactive lymphocytes. Translation of these processes in molecular terms indicates that cytokines, including interferons, ligands of the tumor necrosis factor receptor family and interleukins, and also chemokines and matrix metalloproteinases play pivotal roles in MS. This not only helps to understand disease mechanisms in the central nervous system of affected patients, but also forms a solid scientific basis to improve present therapies. Treatment of MS with parenterally administered anti-inflammatory agents may be improved, based on present knowledge and new insights obtained with animal models. Such innovations include better use of knowledge about the formulation, administration, turnover and glycosylation of interferon-β (IFN-β), combinations of IFN-β with inhibitors of IFN-β-degrading proteinases in MS, and new ways to diminish vascular cuffs and the transmigration of leukocytes across the two basement membranes of the BBB. Novel molecules interfering with matrix metalloproteinases and chemokines, such as EMMPRIN, COAM and monoclonal antibodies are currently being investigated, demonstrating continued efforts to find new drugs for MS treatment.  相似文献   

18.
Myocarditis is indicated as the second leading cause of sudden death in young adults. Reovirus induces myocarditis in neonatal mice, providing a tractable model system for investigation of this important disease. Alpha/beta-interferon (IFN-α/β) treatment improves cardiac function and inhibits viral replication in patients with chronic myocarditis, and the host IFN-α/β response is a determinant of reovirus strain-specific differences in induction of myocarditis. Virus-induced IFN-β stimulates a signaling cascade that establishes an antiviral state and further induces IFN-α/β through an amplification loop. Reovirus strain-specific differences in induction of and sensitivity to IFN-α/β are associated with the viral M1, L2, and S2 genes. The reovirus M1 gene-encoded μ2 protein is a strain-specific repressor of IFN-β signaling, providing one possible mechanism for the variation in resistance to IFN and induction of myocarditis between different reovirus strains. We report here that μ2 amino acid 208 determines repression of IFN-β signaling and modulates reovirus induction of IFN-β in cardiac myocytes. Moreover, μ2 amino acid 208 determines reovirus replication, both in initially infected cardiac myocytes and after viral spread, by regulating the IFN-β response. Amino acid 208 of μ2 also influences the cytopathic effect in cardiac myocytes after spread. Finally, μ2 amino acid 208 modulates myocarditis in neonatal mice. Thus, repression of IFN-β signaling mediated by reovirus μ2 amino acid 208 is a determinant of the IFN-β response, viral replication and damage in cardiac myocytes, and myocarditis. These results demonstrate that a single amino acid difference between viruses can dictate virus strain-specific differences in suppression of the host IFN-β response and, consequently, damage to the heart.  相似文献   

19.
IFN-β inhibits the expansion of Th17 cells in active multiple sclerosis (AMS), and this might contribute to improve the clinical symptoms. The effectiveness of this inhibition, however, requires intact IFN-γ signaling in T cells. In this study, we report that both mRNA and cell surface expression of the signaling chain of the IFN-γ receptor (IFN-γR2) and its cognate tyrosine kinase JAK2 are enhanced in peripheral blood Th17 cells and clones from patients with AMS compared with those with inactive multiple sclerosis (IMS) or healthy subjects (HS). IFN-γ decreased the frequency of Th17 peripheral cells and proliferation of Th17 clones from AMS patients. Stimulation of PBMCs from HS in Th17-polarizing conditions resulted in the enhancement of JAK2 expression and accumulation of cell surface IFN-γR2. The role of JAK2 in the modulation of IFN-γR2 was demonstrated as its transduction prevented rapid internalization and degradation of IFN-γR2 in JAK2-deficient γ2A cells. In conclusion, these data identify JAK2 as a critical factor that stabilizes IFN-γR2 surface expression in Th17 cells from AMS patients, making them sensitive to IFN-γ. These data may have clinical implications for a better use of IFNs in multiple sclerosis and possibly other inflammatory diseases.  相似文献   

20.
β-Interferons (IFN-βs) represent one of the first line treatments for relapsing-remitting multiple sclerosis, slowing disease progression while reducing the frequency of relapses. Despite this, more effective, well tolerated therapeutic strategies are needed. Cannabinoids palliate experimental autoimmune encephalomyelitis (EAE) symptoms and have therapeutic potential in MS patients although the precise molecular mechanism for these effects is not understood. Toll-like receptor (TLR) signaling controls innate immune responses and TLRs are implicated in MS. Here we demonstrate that the synthetic cannabinoid R(+)WIN55,212-2 is a novel regulator of TLR3 and TLR4 signaling by inhibiting the pro-inflammatory signaling axis triggered by TLR3 and TLR4, whereas selectively augmenting TLR3-induced activation of IFN regulatory factor 3 (IRF3) and expression of IFN-β. We present evidence that R(+)WIN55,212-2 strongly promotes the nuclear localization of IRF3. The potentiation of IFN-β expression by R(+)WIN55,212-2 is critical for manifesting its protective effects in the murine MS model EAE as evidenced by its reduced therapeutic efficacy in the presence of an anti-IFN-β antibody. R(+)WIN55,212-2 also induces IFN-β expression in MS patient peripheral blood mononuclear cells, whereas down-regulating inflammatory signaling in these cells. These findings identify R(+)WIN55,212-2 as a novel regulator of TLR3 signaling to IRF3 activation and IFN-β expression and highlights a new mechanism that may be open to exploitation in the development of new therapeutics for the treatment of MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号