首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide and lipid peroxidation.   总被引:9,自引:0,他引:9  
Nitric oxide can both promote and inhibit lipid peroxidation. By itself, nitric oxide acts as a potent inhibitor of the lipid peroxidation chain reaction by scavenging propagatory lipid peroxyl radicals. In addition, nitric oxide can also inhibit many potential initiators of lipid peroxidation, such as peroxidase enzymes. However, in the presence of superoxide, nitric oxide forms peroxynitrite, a powerful oxidant capable of initiating lipid peroxidation and oxidizing lipid soluble antioxidants. The role of nitric oxide in vascular pathology is discussed.  相似文献   

2.
Simultaneous addition of ascorbic acid and organic hydroperoxides to rat liver microsomes resulted in enhanced lipid peroxidation (approximately threefold) relative to incubation of organic hydroperoxides with microsomes alone. No lipid peroxidation was evident in incubations of ascorbate alone with microsomes. The stimulatory effect of ascorbate on linoleic acid hydroperoxide (LAHP)-dependent peroxidation was evident at all times whereas stimulation of cumene hydroperoxide (CHP)-dependent peroxidation occurred after a lag phase of up to 20 min. EDTA did not inhibit CHP-dependent lipid peroxidation but completely abolished ascorbate enhancement of lipid peroxidation. Likewise, EDTA did not significantly inhibit peroxidation by LAHP but dramatically reduced ascorbate enhancement of lipid peroxidation. The results reveal a synergistic prooxidant effect of ascorbic acid on hydroperoxide-dependent lipid peroxidation. The inhibitory effect of EDTA on enhanced peroxidation suggests a possible role for endogenous metals mobilized by hydroperoxide-dependent oxidations of microsomal components.  相似文献   

3.
The effect of cobalt on lipid peroxidation in biological membranes, phospholipid liposomes and fatty acid micelles was investigated. Cobaltous ion, at micromolar concentrations, inhibited iron-ascorbate induced lipid peroxidation in erythrocyte ghosts, microsomes and phosphatidylserine liposomes at pH 7.4. The pH seemed to be important for the anti-peroxidative effect of cobalt, because under slightly acidic conditions cobalt did not inhibit peroxidation. Cobalt was less effective in inhibiting peroxidation stimulated by organic hydroperoxides. Iron-ascorbate induced lipid peroxidation was also inhibited by EDTA. However, certain ratios of EDTA: cobalt in the reaction mixture stimulated peroxidation. Cobalt did not inhibit lipid peroxidation in linoleic acid micelles and phosphatidylethanolamine liposomes. The presence of phosphatidylserine, however, rendered these micelles and liposomes to cobalt inhibition. We conclude that the cobaltous ion is a potent inhibitor of lipid peroxidation in biological membranes and that the binding of cobalt to phosphatidylserine is necessary for the inhibitory effect of this metal ion.  相似文献   

4.
The effects of carnosine (beta-alanyl-L-histidine) and anserine (beta-alanyl-1-methyl-L-histidine) on ascorbate-dependent lipid peroxidation in frog skeletal muscle sarcoplasmic reticulum were studied. It was found that the dipeptides (10-50 mM) cause a 25-90% inhibition of ascorbate-dependent lipid peroxidation and decrease the reaction rate and the amount of end products. The nature of lipid peroxidation primary products in the presence of the dipeptides changes which can be evidenced from changes in their spectral properties. Unlike other known natural antioxidants, skeletal muscle dipeptides do not only inhibit lipid peroxidation but also decrease the level of accumulated lipid peroxidation products. Histidine and beta-alanine, similar to imidazole, glycyl-glycine, arginyl-phenyl alanine and alpha-alanyl-D-histidine do not inhibit lipid peroxidation. At the same time, the carnosine stereoisomer D-carnosine which does not exist in nature exhibits a far greater inhibiting effect as compared to its natural counterpart. It is assumed that the skeletal muscle dipeptides carnosine and anserine are highly effective as natural antioxidants.  相似文献   

5.
《Free radical research》2013,47(5):291-298
An excess of copper is the cause of hemolysis in a number of clinical conditions. Incubation of human erythrocyte (RBC) suspensions with copper (II) causes the formation of methemoglobin, lipid peroxidation and hemolysis.

A new variant of the thiobarbituric acid (TBA) method, which minimizes the formation of interfering chromophores, was used to detect lipid peroxidation. Lipid peroxidation precedes hemolysis and the antioxidant vitamins C and E, which inhibit lipid peroxidation, also inhibit hemolysis. Consequently lipid peroxidation appears to be the cause of RBC destruction. Lipid peroxidation arises mostly from the oxidation of oxyhemoglobin by copper as it is inhibited in RBCs with carbon monoxyhemoglobin or methemoglobin. A direct interaction of copper with the red cell membrane seems to play only a minor role. Copper effects depend on the presence of free SH groups. Lipid peroxidation is probably initiated by activated forms of oxygen as it is increased by an inhibitor of catalase and reduced by hydroxyl radical scavengers. With higher copper concentrations hemolysis is greater: its mechanism appears different as lipid peroxidation is smaller but hemoglobin alterations, namely precipitation, are more pronounced.  相似文献   

6.
The role of iron in the peroxidation of polyunsaturated fatty acids is reviewed, especially with respect to the involvement of oxygen radicals. The hydroxyl radical can be generated by a superoxide-driven Haber-Weiss reaction or by Fenton's reaction; and the hydroxyl radical can initiate lipid peroxidation. However, lipid peroxidation is frequently insensitive to hydroxyl radical scavengers or superoxide dismutase. We propose that the hydroxyl radical may not be involved in the peroxidation of membrane lipids, but instead lipid peroxidation requires both Fe2+ and Fe3+. The inability of superoxide dismutase to affect lipid peroxidation can be explained by the fact that the direct reduction of iron can occur, exemplified by rat liver microsomal NADPH-dependent lipid peroxidation. Catalase can be stimulatory, inhibitory or without affect because H2O2 may oxidize some Fe2+ to form the required Fe3+, or, alternatively, excess H2O2 may inhibit by excessive oxidation of the Fe2+. In an analogous manner reductants can form the initiating complex by reduction of Fe3+, but complete reduction would inhibit lipid peroxidation. All of these redox reactions would be influenced by iron chelation.  相似文献   

7.
An excess of copper is the cause of hemolysis in a number of clinical conditions. Incubation of human erythrocyte (RBC) suspensions with copper (II) causes the formation of methemoglobin, lipid peroxidation and hemolysis.

A new variant of the thiobarbituric acid (TBA) method, which minimizes the formation of interfering chromophores, was used to detect lipid peroxidation. Lipid peroxidation precedes hemolysis and the antioxidant vitamins C and E, which inhibit lipid peroxidation, also inhibit hemolysis. Consequently lipid peroxidation appears to be the cause of RBC destruction. Lipid peroxidation arises mostly from the oxidation of oxyhemoglobin by copper as it is inhibited in RBCs with carbon monoxyhemoglobin or methemoglobin. A direct interaction of copper with the red cell membrane seems to play only a minor role. Copper effects depend on the presence of free SH groups. Lipid peroxidation is probably initiated by activated forms of oxygen as it is increased by an inhibitor of catalase and reduced by hydroxyl radical scavengers. With higher copper concentrations hemolysis is greater: its mechanism appears different as lipid peroxidation is smaller but hemoglobin alterations, namely precipitation, are more pronounced.  相似文献   

8.
Comparing beta-carotene,vitamin E and nitric oxide as membrane antioxidants   总被引:2,自引:0,他引:2  
Singlet oxygen initiates lipid peroxidation via a nonfree radical mechanism by reacting directly with unsaturated lipids to form lipid hydroperoxides (LOOHs). These LOOHs can initiate free radical chain reactions leading to membrane leakage and cell death. Here we compare the ability and mechanism by which three small-molecule membrane antioxidants (beta-carotene, alpha-tocopherol and nitric oxide) inhibit lipid peroxidation in membranes. We demonstrate that beta-carotene provides protection against singlet oxygen-mediated lipid peroxidation, but does not slow free radical-mediated lipid peroxidation. Alpha-Tocopherol does not protect cells from singlet oxygen, but does inhibit free radical formation in cell membranes. Nitric oxide provides no direct protection against singlet oxygen exposure, but is an exceptional chain-breaking antioxidant as evident from its ability to blunt oxygen consumption during free radical-mediated lipid peroxidation. These three small-molecule antioxidants appear to have complementary mechanisms for the protection of cell membranes from detrimental oxidations.  相似文献   

9.
Miura T  Muraoka S  Fujimoto Y 《Life sciences》2002,70(22):2611-2621
Lipid peroxidation was investigated to evaluate the deleterious effect on tissues by phenylbutazone (PB). PB induced lipid peroxidation of microsomes in the presence of horseradish peroxidase and hydrogen peroxide (HRP-H2O2). The lipid peroxidation was completely inhibited by catalase but not by superoxide dismutase. Mannitol and dimethylsulfoxide had no effect. These results indicated no paticipation of superoxide and hydroxyl radical in the lipid peroxidation. Reduced glutathione (GSH) efficiently inhibited the lipid peroxidation. PB radicals emitted electron spin resonance (ESR) signals during the reaction of PB with HRP-H2O2. Microsomes and arachidonic acid strongly diminished the ESR signals, indicating that PB radicals directly react with unsaturated lipids of microsomes to cause thiobarbituric acid reactive substances. GSH sharply diminished the ESR signals of PB radicals, suggesting that GSH scavenges PB radicals to inhibit lipid peroxidation. Also, 2-methyl-2-nitrosopropan strongly inhibited lipid peroxidation. R-Phycoerythrin, a peroxyl radical detector substance, was decomposed by PB with HRP-H2O2. These results suggest that lipid peroxidation of microsomes is induced by PB radicals or peroxyl radicals, or both.  相似文献   

10.
The effects of the nitroxide 2-ethyl-2,5,5-trimethyl-3-oxazolidinoxyl (OXANO.) and the corresponding hydroxylamine 2-ethyl-1-hydroxy-2,5,5-trimethyl-3-oxazolidine (OXANOH) on in vitro lipid peroxidation in rat liver microsomes and reconstituted lipid vesicles were investigated, and compared with those of some commonly used spin trapping agents. OXANO. and OXANOH (10-100 microM) inhibited iron-dependent lipid peroxidation, as did the spin trapping agents (10-100 mM). OXANO. mainly inhibited the rate of peroxidation, but caused only a small delay in the time of onset. OXANOH exerted its effect by delaying the onset of peroxidation in an antioxidant fashion, and also by inhibiting the rate. Higher concentrations of both substances were required to inhibit t-butylhydroperoxide-dependent lipid peroxidation. OXANO. was found to oxidize the ferrous-ADP complex required for initiation of peroxidation, and this is probably the basis of the inhibitory effect of this compound. Since the reaction of OXANO. tends to produce OXANOH and vice versa, either one could inhibit all reactions of lipid peroxidation.  相似文献   

11.
12.
We consecutively observed lipid peroxidation and cell membrane damage under the condition of hypoxia‐reoxygenation (H/R) in cells and analyzed their mechanisms by using electron transport inhibitors and an antioxidant. In H/R experiments, lipid peroxidation and cell membrane damage were observed during the hypoxia phase. In the reoxygenation phase, lipid peroxidation stopped, while cell membrane damage did not. An antioxidant, n‐acetylcystein (NAC), and potassium cyanide (KCN) inhibited lipid peroxidation and cell membrane damage, while rotenone did not inhibit either of them. Although antimycin A did not inhibit lipid peroxidation, it inhibited cell membrane damage during the hypoxia phase but not during the reoxygenation phase. These results suggested that lipid peroxidation can affect cell membrane damage as a trigger during the hypoxia phase and the generation of oxidative stress can vary depending on the inhibition locations in the electron transport system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
During in vitro senescence (chlorophyll loss) of oat ( Avena sativa L. cv. Victory) leaf segments and of leaf discs of Rumex obtusifolius L, the activity of catalase decreases and lipid peroxidation increases. The activity of superoxide dismutase (SOD) decreases in Rumex leaf discs but changes little in oat leaf segments. Kinetin treatment of oat leaf segments, and GA3 treatment of Rumex leaf discs, inhibit decline in the enzyme activities and increase in the level of lipid peroxidation and strongly inhibit senescence. In either leaf tissue a treatment with ethanol or vitamin E (scavengers of free radicals) or with diphenylisobenzofuran (scavenger of singlet oxygen) results in a strong inhibition of lipid peroxidation and senescence, but does not affect much the decline in the SOD and catalase activities. It is concluded that, i) senscence-associated lipid peroxidation is induced by free radicals and singlet oxygen; and, ii) kinetin and GA3 inhibit senescence mainly by a modulation of lipid peroxidation through maintaining high levels of such cellular scavengers as SOD and catalase.  相似文献   

14.
1. NADPH-dependent iron and drug redox cycling, as well as lipid peroxidation process were investigated in microsomes isolated from human term placenta. 2. Paraquat and menadione were found to undergo redox cycling, catalyzed by NADPH:cytochrome P-450 reductase in placental microsomes. 3. The drug redox cycling was able to initiate microsomal lipid peroxidation in the presence of micromolar concentrations of iron and ethylenediaminetetraacetate (EDTA). 4. Superoxide was essential for the microsomal lipid peroxidation in the presence of iron and EDTA. 5. Drastic peroxidative conditions involving superoxide and prolonged incubation in the presence of iron were found to destroy flavin nucleotides, inhibit NADPH:cytochrome P-450 reductase and inhibit propagation step of lipid peroxidation. 6. Reactive oxo-complex formed between iron and superoxide is proposed as an ultimate species for the initiation of lipid peroxidation in microsomes from human term placenta as well as for the destruction of flavin nucleotides and inhibition of NADPH:cytochrome P-450 reductase as well as for impairment of promotion of lipid peroxidation under drastic peroxidative conditions.  相似文献   

15.
Seminal plasma antioxidant inhibited ascorbate/iron-induced lipid peroxidation in spermatozoa, brain and liver mitochondria. The concentration required to produce inhibition in brain and liver mitochondria was high. Denaturation of spermatozoa resulted in complete loss of antioxidant action. Maintenance of native structure was essential for action of seminal plasma antioxidant in spermatozoal lipid peroxidation. The antioxidant inhibited NADPH, Fe3+-ADP induced lipid peroxidation in microsomes and consequences of lipid peroxidation such as glucose-6-phosphatase inactivation were prevented by presence of antioxidant. It did not inhibit microsomal lipid peroxidation induced by ascorbate and iron and xanthine-xanthine oxidase.  相似文献   

16.
Fluorescence in red cells following hydrogen peroxide treatment has been attributed to lipid peroxidation of the membrane. The putative relationship between lipid peroxidation and fluorescence was questioned by the finding that BHT and alpha-tocopherol, which are thought to inhibit lipid peroxidation, do not inhibit the fluorescence detected by flow cytometry. Furthermore, lipid peroxidation induced in red cells by the Fe(III)-ADP-ascorbate system did not produce fluorescence. These results require an alternative explanation for the hydrogen peroxide-induced fluorescence. A role for reduced hemoglobin is indicated by the inhibition of fluorescence by pretreatment of cells with CO that binds strongly to ferrohemoglobin and nitrite that oxidizes ferrohemoglobin. Our earlier studies have shown the formation of fluorescent heme degradation products during the reaction of purified hemoglobin with hydrogen peroxide, which was also inhibited by CO and nitrite pretreatment. The fluorescence produced in red cells after the addition of hydrogen peroxide can, therefore, be attributed to fluorescent heme degradation products.  相似文献   

17.
Some catecholamines and indolamines inhibit lipid peroxidation. Recent studies indicate that catecholaminergic inhibition of lipid peroxidation may be receptor mediated in vivo and in cell cultures. Because oxidative stress is one of the hypothesized pathogenic mechanisms for neurodegenerative diseases, including Alzheimer's disease (AD), we hypothesized that catecholaminergic and indolaminergic inhibition of lipid peroxidation would be altered in AD as compared to age-matched non-AD. To test this hypothesis we studied the effect of a variety of neurotransmitters and their antagonists on ascorbate-stimulated lipid peroxidation in membrane fragment preparations derived from postmortem human brain. In this in vitro system, the inhibition of lipid peroxidation by dopamine and serotonin did not appear to be receptor mediated. Further, our findings indicate that there is no apparent effect of age or AD on the inhibition of lipid peroxidation by catecholaminergic and indolaminergic agents.  相似文献   

18.
Salicylic acid (SA) could inhibit catalase activity, induce rapid lipid peroxidation and PR-1 gene expression of the tobacco ( Nicotiana tabacum L. ) cell culture which was incubated with exogenous SA. Ρ-ihydroxybenzene and H2O2 could also induce lipid peroxidation and PR-1 gene expression at different level, but they were not able to inhibit the catalase activity of tobacco cells. Inhi0itors of mRNA and protein-synthesis (a-amanitine and cycloheximide, respectively) could not induce both lipid peroxidation and PR-1 gene expression of tobacco cell culture. However, coordinated action with SA respectively, a-amanitine or cycloheximide was able to induce lipid peroxidation effectively, but strongly blocked the activation of PR-1 gene expression by SA in tobacco cell culture. These results suggested that the generation of reactive metabolites or free radicals, which were induced by SA or other inducers through reaction with catalase or other compounds, initiated lipid peroxidation, subsequently activated pathogen-resistance genes expression. Obviously the lipid peroxidation molecule played an important role in SA signal transduction in tobacco.  相似文献   

19.
The processes of lipid peroxidation have been studied in bovine adrenal cortex in vitro. The lipid peroxidation rate in this tissue is shown to be dependent on the content of metal ions. EDTA, deferroxamine and penicyllamine inhibit spontaneous lipid peroxidation by 25, 50 and 42%, respectively. The ability to activate the process permits arranging metal ions in the following sequence: Fe2+ greater than Fe3+ greater than Cu2+ greater than Mg2+ greater than Mn2+. The maximum activation of lipid peroxidation is observed at Fe2+ and Fe3+ concentrations within the range of 5 x 10(-6) x 10(-4) M.  相似文献   

20.
Lipid peroxidation in rat uterus   总被引:3,自引:0,他引:3  
Lipid peroxidation in rat uterus has been studied using NADPH- and ascorbate-induced systems. Lipid peroxidation in rat uterus is low as compared to rat liver. Uterus is more sensitive to ascorbate-induced lipid peroxidation than that induced by NADPH. Uterus contains lower amounts of phospholipids and has a lesser degree of unsaturation in lipids. Co-factor studies show that Fe2+ is more important for ascorbate-induced lipid peroxidation. Endometrium is more sensitive to ascorbate-induced lipid peroxidation than myometrium. It also contains more total lipids and phospholipids besides having a higher degree of unsaturation in the lipids as compared to myometrium. Among the subcellular fractions, mitochondria are more prone to ascorbate-induced lipid peroxidation, whereas microsomes are more sensitive to NADPH-induced lipid peroxidation. Uteri from old rats (24 months) and pregnant rats are more resistant to lipid peroxidation than those from 3-month-old control rats. Uterus of pregnant rats contains more factors which inhibit lipid peroxidation and also has a lesser degree of unsaturation in lipids compared with uterus of control rats. The possible consequences of the resistance of uterus to lipid peroxidation, especially during pregnancy and senescence, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号