首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cobalamin is essentially required for growth by Euglena gracilis and shown to be converted to coenzyme forms promptly after feeding cyanocobalamin. Concentrations of coenzymes, methylcobalamin, and 5′-deoxyadenosylcobalamin, reached about 1 femtomole/106 cells 2 hours after feeding cyanocobalamin to cobalamin-limited cells. Cobalamins all were bound to proteins in Euglena cells and located in subcellular fractions of chloroplasts, mitochondria, microsomes, and cytosol. Incorporated cobalamin into chloroplasts was localized in thylakoids. Methylcobalamin existed in chloroplasts, mitochondria, and cytosol, while 5′-deoxyadenosylcobalamin was in mitochondria and the cytosol, 2 h after feeding cyanocobalamin to Euglena cells. Quantitative alterations of methylcobalamin and 5′-deoxyadenosylcobalamin in chloroplasts suggest their important functions as coenzymes in this organelle. The occurrence of functional cobalamins in chloroplasts has not been reported in other photosynthetic eukaryotes.  相似文献   

2.
The present study compares the binding and inhibitory activity of two photosystem II inhibitors: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron [DCMU]) and 2-chloro-4-(ethylamine)-6-(isopropyl amine)-S-triazene (atrazine). Chloroplasts isolated from naturally occurring triazine-susceptible and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.) showed the following characteristics. (a) Diuron strongly inhibited photosynthetic electron transport from H2O to 2,6-dichlorophenolindophenol in both biotypes. Strong inhibition by atrazine was observed only with the susceptible chloroplasts. (b) Hill plots of electron transport inhibition data indicate a noncooperative binding of one inhibitor molecule at the site of action for both diuron and atrazine. (c) Susceptible chloroplasts show a strong diuron and atrazine binding (14C-radiolabel assays) with binding constants (K) of 1.4 × 10−8 molar and 4 × 10−8 molar, respectively. In the resistant chloroplasts the diuron binding was slightly decreased (K = 5 × 10−8 molar), whereas no specific atrazine binding was detected. (d) In susceptible chloroplasts, competitive binding between radioactively labeled diuron and non-labeled atrazine was observed. This competition was absent in the resistant chloroplasts.  相似文献   

3.
The effects of various calcium ion antagonists and ion transport inhibitors on photosynthetic O2 evolution of corals, isolated zooxanthellae, sea anemone tentacles, and Chlorococcum oleofaciens were measured. Only the phenothiazine drugs were effective at inhibiting photosynthesis. Trifluoperazine, a calcium ion antagonist drug, inhibited at low concentrations, with 10−4 molar and 8 × 10−6 molar completely abolishing photosynthesis in the intact corals and isolated zooxanthellae, respectively. Net photosynthetic O2 evolution of C. oleofaciens was eliminated by concentrations of trifluoperazine as low as 2.8 × 10−5 molar.  相似文献   

4.
A growth regulator (G; 4-ethyl-1-hydroxy-4,8,8,10,10 pentamethyl-7,9-dioxo-2,3 dioxyabicyclo (4.4.0) decene-5) from Eucalyptus grandis (Maiden) reduced stomatal conductance and also photosynthetic capacity when fed through the transpiration stream of detached leaves. The concentration of G required for this effect was high (10−4 molar), but the amount of G taken up (dose) was below the level which has previously been found in E. grandis leaves. Similar effects were observed in detached leaves of Xanthium strumarium L. though almost 10 times more G was required. G reduced CO2-dependent O2 evolution from isolated cells of X. strumarium. In spinach (Spinacia oleracea L.) chloroplasts, electron transport through photosystem II was reduced by G. It is proposed that G affects stomatal conductance and photosynthesis by reducing photosystem II activity in both the guard cell chloroplasts and mesophyll cell chloroplasts.  相似文献   

5.
Thermostability of the photosynthetic apparatus of abscisic acid (ABA)-treated seedlings of barley (Hordeum vulgare) was studied by light-scattering and by fluorescence measurements of isolated chloroplasts. ABA treatment markedly decreased heat damage of the chloroplast ultrastructure; an exogenous ABA concentration of 10−5 molar was most effective. Heat-induced increase of the 77 kilodalton fluorescence ratio F740/F685 was also smaller at this ABA concentration. The heat-induced increase of the initial chlorophyll fluorescence level (Fo) was virtually eliminated in ABA-treated (10−5 molar) chloroplasts up to 45°C and slightly increased at 50°C, relative to control chloroplasts where Fo increased even at 35°C and reached its maximal value at 45°C. In control chloroplasts, Fo increased with a 5-minute pretreatment temperature, an effect observed as low as 35°C. Fo was maximal at 45°C. In contrast, chloroplasts treated with 10−5 molar ABA did not exhibit a heat-induced increase in Fo until 50°C.  相似文献   

6.
The effects of the photosystem II herbicides diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) on the photosynthetic membranes of a cyanobacterium, Aphanocapsa 6308, were compared to the effects on a higher plant, Spinacia oleracea. The inhibition of photosystem II electron transport by these herbicides was investigated by measuring the photoreduction of the dye 2,6-dichlorophenol-indophenol spectrophotometrically using isolated membranes. The concentration of herbicide that caused 50% inhibition of electron transport (I50 value) in Aphanocapsa membranes for diuron was 6.8 × 10−9 molar and the I50 value for atrazine was 8.8 × 10−8 molar. 14C-labeled diuron and atrazine were used to investigate herbicide binding with calculated binding constants (K) being 8.2 × 10−8 molar for atrazine and 1.7 × 10−7 molar for diuron. Competitive binding studies carried out on Aphanocapsa membranes using radiolabeled [14C]atrazine and unlabeled diuron revealed that diuron competed with atrazine for the herbicide-binding site. Experiments involving the photoaffinity label [14C]azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-2-triazine) and autoradiography of polyacrylamide gels indicated that the herbicide atrazine binds to a 32-kilodalton protein in Aphanocapsa 6308 cell extracts.  相似文献   

7.
Chloroplasts have been isolated from bermudagrass (Cynodon dactylon L.) leaves and assayed for photophosphorylation and electron transport activity. These chloroplasts actively synthesize adenosine triphosphate during cyclic electron flow with phenazine methosulfate and noncyclic electron flow concurrent with the reduction of such Hill oxidants as nicotinamide adenosine dinucleotide phosphate, cytochrome c, and ferricyanide. Apparent Km values for the cofactors of photophosphorylation have been determined to be 5 × 10−5 M for phosphate and 2.5 × 10−5 M for adenosine diphosphate. The influence of light intensity on photophosphorylation has been studied and the molar ratio of cyclic to noncyclic phosphorylation calculated. It is concluded that the high photosynthetic capacity of bermudagrass leaves probably could be supported by the photophosphorylation capacities indicated in these chloroplast studies and the anomalous lack of data in chlorolast studies on the production of sufficient reductant for CO2 assimilation at high light intensities has been noted.  相似文献   

8.
Effect of several parameters on inhibition of potato (Solanum tuberosum) invertase by its endogenous proteinaceous inhibitor was determined using homogeneous preparations of both proteins. The inhibitor and invertase formed an inactive complex with an observed association rate constant at pH 4.70 and 37°C of 8.82 × 102 per molar per second and a dissociation rate constant of 3.3 × 10−3 per minute. The inhibitor appeared to bind to invertase in more than one step. Initial interaction (measured by loss of invertase activity) was rapid, relatively weak, readily reversible (Ki of 2 × 10−6 molar) and noncompetitive with substrate at pH 4.70. Initial interaction was probably followed by isomerization to a tighter (Ki of 6.23 × 10−8 molar) complex, which dissociated slowly with a half-time of 3.5 hour. Interaction between enzyme and inhibitor appeared to be of ionic character and essentially pH independent between pH 3.5 and 7.4.  相似文献   

9.
Keck RW  Boyer JS 《Plant physiology》1974,53(3):474-479
Cyclic and noncyclic photophosphorylation and electron transport by photosystem 1, photosystem 2, and from water to methyl viologen (“whole chain”) were studied in chloroplasts isolated from sunflower (Helianthus annus L. var Russian Mammoth) leaves that had been desiccated to varying degrees. Electron transport showed considerable inhibition at leaf water potentials of −9 bars when the chloroplasts were exposed to an uncoupler in vitro, and it continued to decline in activity as leaf water potentials decreased. Electron transport by photosystem 2 and coupled electron transport by photosystem 1 and the whole chain were unaffected at leaf water potentials of −10 to −11 bars but became progressively inhibited between leaf water potentials of −11 and −17 bars. A low, stable activity remained at leaf water potentials below −17 bars. In contrast, both types of photophosphorylation were unaffected by leaf water potentials of −10 to −11 bars, but then ultimately became zero at leaf water potentials of −17 bars. Although the chloroplasts isolated from the desiccated leaves were coupled at leaf water potentials of −11 to −12 bars, they became progressively uncoupled as leaf water potentials decreased to −17 bars. Abscisic acid and ribonuclease had no effect on chloroplast photophosphorylation. The results are generally consistent with the idea that chloroplast activity begins to decrease at the same leaf water potentials that cause stomatal closure in sunflower leaves and that chloroplast electron transport begins to limit photosynthesis at leaf water potentials below about −11 bars. However, it suggests that, during severe desiccation, the limitation may shift from electron transport to photophosphorylation.  相似文献   

10.
As part of an analysis of the factors regulating photosynthesis in Agropyron smithii Rydb., a C3 grass, the response of electron transport and photophosphorylation to temperature in isolated chloroplast thylakoids has been examined. The response of the light reactions to temperature was found to depend strongly on the preincubation time especially at temperatures above 35°C. Using methyl viologen as a noncyclic electron acceptor, coupled electron transport was found to be stable to 38°C; however, uncoupled electron transport was inhibited above 38°C. Photophosphorylation became unstable at lower temperatures, becoming progressively inhibited from 35 to 42°C. The coupling ratio, ATP/2e, decreased continuously with temperature above 35°C. Likewise, photosystem I electron transport was stable up to 48°C, while cyclic photophosphorylation became inhibited above 35°C. Net proton uptake was found to decrease with temperatures above 35°C supporting the hypothesis that high temperature produces thermal uncoupling in these chloroplast thylakoids. Previously determined limitations of net photosynthesis in whole leaves in the temperature region from 35 to 40°C may be due to thermal uncoupling that limits ATP and/or changes the stromal environment required for photosynthetic carbon reduction. Previously determined limitations to photosynthesis in whole leaves above 40°C correlate with inhibition of photosynthetic electron transport at photosystem II along with the cessation of photophosphorylation.  相似文献   

11.
A strain of Synechococcus sp. PCC7942 lacking functional Fe superoxide dismutase (SOD), designated sodB, was characterized by its growth rate, photosynthetic pigments, inhibition of photosynthetic electron transport activity, and total SOD activity at 0°C, 10°C, 17°C, and 27°C in moderate light. At 27°C, the sodB and wild-type strains had similar growth rates, chlorophyll and carotenoid contents, and cyclic photosynthetic electron transport activity. The sodB strain was more sensitive to chilling stress at 17°C than the wild type, indicating a role for FeSOD in protection against photooxidative damage during moderate chilling in light. However, both the wild-type and sodB strains exhibited similar chilling damage at 0°C and 10°C, indicating that the FeSOD does not provide protection against severe chilling stress in light. Total SOD activity was lower in the sodB strain than in the wild type at 17°C and 27°C. Total SOD activity decreased with decreasing temperature in both strains but more so in the wild type. Total SOD activity was equal in the two strains when assayed at 0°C.  相似文献   

12.
Photoinhibition and P700 in the Marine Diatom Amphora sp   总被引:3,自引:1,他引:2       下载免费PDF全文
The marine diatom Amphora sp. was grown at a light intensity of 7.0 × 1015 quanta centimeter−2 second−1. Light saturation of photosynthesis for these cells was between 6.0 and 7.0 × 1016 quanta centimeter−2 second−1. At light intensities greater than saturation, photosynthetic 14CO2 fixation was depressed, while P700 unit size (chlorophyll a concentration/P700 activity) increased and number of P700 units per cell decreased. After a 1-hour exposure of Amphora sp. to a photoinhibitory light intensity of 2.45 × 1017 quanta centimeter−2 second−1, there was a 45 to 50% decrease in the rate of 14CO2 fixation relative to the rate at the culture light intensity. There also was a 25% increase in P700 unit size and a 30% reduction in the number of P700 units per cell but no change in total chlorophyll a concentration. Following this period of photoinhibition, the cells were returned to a light regime similar to that in the original culture conditions. Within 1 hour, both number of P700 units per cell and P700 unit size returned to levels similar to those of cells which were kept at the culture light intensity. The rates of photosynthesis did not recover as rapidly, requiring 2 to 3 hours to return to the rate for the nonphotoinhibited cells. Our results indicate that a decrease in P700 activity (with a resultant increase in P700 unit size) may be partially responsible for the photoinhibition of algal photosynthetic carbon dioxide fixation.  相似文献   

13.
Photosynthesis, growth, and the role of chloride   总被引:5,自引:3,他引:2       下载免费PDF全文
Previous studies with isolated chloroplasts have indicated that Cl is an essential cofactor for photosynthesis. Considerable support for the postulated Cl requirement in photosynthesis came from the observation that Cl is essential for growth. Data are presented which show that a 60% reduction in growth which occurred in Cl -deficient sugar beet (Beta vulgaris L.) was not due to an effect of Cl on the rate of photosynthesis in vivo (net CO2 uptake per unit area of attached leaves). The principal effect of Cl deficiency was to lower cell multiplication rates in leaves, thus slowing down their growth and ultimately decreasing their area. The absence of an effect of Cl on photosynthesis in vivo was unlikely to have been due to Cl retention by the chloroplasts because their Cl concentration (measured after nonaqueous isolation) decreased progressively with decrease in leaf Cl.  相似文献   

14.
In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10−5 Wm−2/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10−5 Wm−2/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10−5 Wm−2/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10−6 Wm−2/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power.  相似文献   

15.
Protoplasts and intact chloroplasts isolated from Agropyron smithii Rybd. were utilized in an effort to determine the limiting factor(s) for photosynthesis at supraoptimal temperatures. Saturated CO2-dependent O2 evolution had a temperature optimum of 35°C for both protoplasts and intact chloroplasts. A sharp decline in activity was observed as assay temperature was increased above 35°C, and at 45°C only 20% of the maximal rate remained. The temperature optimum for 3-phosphoglycerate reduction by intact chloroplasts was 35°C. Above this temperature, 3-phosphoglycerate reduction was more stable than CO2-dependent O2 evolution. Reduction of nitrite in coupled intact chloroplasts had a temperature optimum of 40°C with only slight variation in activity between 35°C and 45°C. Reduction of nitrite in uncoupled chloroplasts had a temperature optimum of 40°C, but increasing the assay temperature to 45°C resulted in a complete loss of activity. Reduction of p-benzoquinone by protoplasts and intact chloroplasts had a temperature optimum of 32°C when measured in the presence of dibromothymoquinone. This photosystem II activity exhibited a strong inhibition of O2 evolution as assay temperature increased above the optimum. It is concluded that, below the temperature optimum, ATP and reductant were not limiting photosynthesis in these systems or intact leaves. Above the temperature optimum, photosynthesis in these systems is limited in part by the phosphorylation potential of the stromal compartment and not by the available reductant.  相似文献   

16.
Robinson SP 《Plant physiology》1985,79(4):996-1002
Spinach leaf chloroplasts isolated in isotonic media (330 millimolar sorbitol, −1.0 megapascals osmotic potential) had optimum rates of photosynthesis when assayed at −1.0 megapascals. When chloroplasts were isolated in hypertonic media (720 millimolar sorbitol, −2.0 megapascals osmotic potential) the optimum osmotic potential for photosynthesis was shifted to −1.8 megapascals and the chloroplasts had higher rates of CO2-dependent O2 evolution than chloroplasts isolated in 330 millimolar sorbitol when both were assayed at high solute concentrations.

Transfer of chloroplasts isolated in 330 millimolar sorbitol to 720 millimolar sorbitol resulted in decreased chloroplast volume but this shrinkage was only transient and the chloroplasts subsequently swelled so that within 2 to 3 minutes at 20°C the chloroplast volume had returned to near the original value. Thus, actual steady state chloroplast volume was not decreased in hypertonic media. In isotonic media, there was a slow but significant uptake of sorbitol by chloroplasts (10 to 20 micromoles per milligram chlorophyll per hour at 20°C). Transfer of chloroplasts from 330 millimolar sorbitol to 720 millimolar sorbitol resulted in rapid uptake of sorbitol (up to 280 micromoles per milligram chlorophyll per hour at 20°C) and after 5 minutes the concentration of sorbitol inside the chloroplasts exceeded 500 millimolar. This uptake of sorbitol resulted in a significant underestimation of chloroplast volume unless [14C]sorbitol was added just prior to centrifuging the chloroplasts through silicone oil. Sudden exposure to osmotic stress apparently induced a transient change in the permeability of the chloroplast envelope since addition of [14C]sorbitol 3 minutes after transfer to hypertonic media (when chloroplast volume had returned to normal) did not result in rapid uptake of labeled sorbitol.

It is concluded that chloroplasts can osmotically adjust in vitro by uptake of solutes which do not normally penetrate the chloroplast envelope, resulting in a restoration of normal chloroplast volume and partially preventing the inhibition of photosynthesis by high solute concentrations. The results indicate the importance of matching the osmotic potential of isolation media to that of the tissue, particularly in studies of stress physiology.

  相似文献   

17.
Pyrophosphorylytic kinetic constants (S0.5, Vmax) of partially purified UDP-glucose- and ADP-glucose pyrophosphorylases from potato tubers were determined in the presence of various intermediary metabolites. The S0.5 of UDP-glucose pyrophosphorylase for UDP-glucose (0.17 millimolar) or pyrophosphate (0.30 millimolar) and the Vmax were not influenced by high concentrations (2 millimolar) of these substances. The most efficient activator of ADP-glucose pyrophosphorylase was 3-P-glycerate (A0.5 = 4.5 × 10−6 molar). The S0.5 for ADP-glucose and pyrophosphate was increased 3.5-fold (0.83 to 0.24 millimolar) and 1.8-fold (0.18 to 0.10 millimolar), respectively, with 0.1 millimolar 3-P-glycerate while the Vmax was increased nearly 4-fold. The magnitude of 3-P-glycerate stimulation was dependent upon the integrity of key sulfhydryl groups (−SH) and pH. Oxidation or blockage of −SH groups resulted in a marked reduction of enzyme activity. Stimulations of 3.1-, 2.9-, 4.8-, and 9.5-fold were observed at pH 7.5, 8.0, 8.5, and 9.0, respectively, in the presence of 3-P-glycerate (2 millimolar). The most potent inhibitor of ADP-glucose pyrophosphorylase was orthophosphate (I0.5 = 8.8 × 10−5. molar). This inhibition was reversed with 3-P-glycerate (1.2 × 10−4 molar), resulting in an increased I0.5 value of 1.5 × 10−3 molar. Likewise, orthophosphate (7.5 × 10−4 molar) caused a decrease in the activation efficiency of 3-P-glycerate (A0.5 from 4.5 × 10−6 molar to 6.7 × 10−5 molar). The significance of 3-P-glycerate activation and orthophosphate inhibition in the regulation of α-glucan biosynthesis in Solanum tuberosum is discussed.  相似文献   

18.
The kinetics of the 520 mμ absorption change in spinach chloroplasts and Chlorella vulgaris following a flash from the ruby laser have been determined as follows: rise halftime ≤ 0.3 × 10−6 second; rapid recovery halftime = 5 to 6 × 10−6 second; intermediate recovery halftime = 4 × 10−4 second (spinach chloroplasts only); slow recovery halftime = 12 to 170 × 10−3 second, dependent on the measuring light intensity and aerobicity of the suspension.

The rapid phase of the 520 mμ reaction is approximately independent of temperature, from 295° to 77° Absolute.

With increasing oxygenation of the sample, the extent of the rapid phase decreases, the extent of the slow phase increases, while the extent of the intermediate phase in spinach chloroplasts remains constant.

In spinach chloroplasts, no recovery halftime of the 3 recovery phases for the 520 mμ absorption change was observed to correspond to the halftime for oxidation of cytochrome f (t½ = 1.3 × 10−3 second).

  相似文献   

19.
The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10−4 molar and paraquat) and also under temperature conditions (3°C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10−9 molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane.  相似文献   

20.
We have examined the activity of the thiamin phosphate pyrophosphorylase in Arabidopsis thaliana wild type and in a mutant (th-1) which requires exogenous thiamin for growth. Mutant and wild-type plants grown in 1 × 10−7 molar thiamin were used for the examination of the production of thiamin and thiamin monophosphate (TMP) using 4-methyl-5-hydroxyethylthiazole phosphate and 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate as substrates. While the wild-type strain formed both thiamin and TMP, the th-1 mutant did not. When TMP was added to the extracts, the th-1 mutant, as well as wild type, produced thiamin. Accordingly, it was concluded that the th-1 mutant was defective in the activity of TMP pyrophosphorylase. Some of the characteristics of the enzyme from the wild-type plant were examined. The optimum temperature for the reaction is 45°C, and the Km values for the substrates are 2.7 × 10−6 molar for 4-methyl-5-hydroxyethylthiazole phosphate and 1.8 × 10−6 molar for 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号