首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
形成血管和淋巴管内层的内皮细胞是脉管系统的重要组成部分,并参与血管和淋巴系统疾病的发病机制。内皮细胞上的血管生成素(Angiopoietin,Ang)-具有免疫球蛋白和表皮生长因子同源性结构域的酪氨酸蛋白激酶(Tyrosine kinase receptors with immunoglobulin and EGF homology domains,Tie)轴是除了血管内皮生长因子受体途径外胚胎心血管和淋巴发育所必需的第二种内皮细胞特异性配体-受体信号传导系统。Ang-Tie轴参与调节产后血管生成与重塑、血管通透性和炎症,以维持血管平衡,因此,该系统在许多血管和淋巴系统疾病中发挥重要的作用。针对近年来Ang-Tie轴在血管和淋巴系统相关疾病中作用的研究进展,文中系统论述了Ang-Tie轴在炎症诱导的血管通透性、血管重塑、眼部新生脉管、剪切应力反应、动脉粥样硬化和肿瘤血管生成和转移中的作用,并总结了涉及Ang-Tie轴的相关治疗性抗体、重组蛋白和小分子药物。  相似文献   

2.
Oxidative stress plays an important part in the appearance and development of cardiovascular diseases. In this context, overproduction of reactive oxygen species leads to deregulation of metabolic pathways, such as cell proliferation or inflammation, which interferes with the homeostasis of vascular endothelium. Oxidative stress can decrease the bioavailability of nitric oxide (*NO) in vessels. This decrease is highly associated with endothelial dysfunction. The "French paradox" is a phenomenon that associates a diet rich in saturated fatty acids and a moderate consumption of wine to a low prevalence of cardiovascular diseases. During the past 10 years, the beneficial effects of wine on cardiovascular diseases have been attributed to the actions of resveratrol and other polyphenols. One of the mechanisms involved in these beneficial effects is the capacity of resveratrol and some other stilbene derivatives to maintain sufficient *NO bioavailability in vascular endothelium. This review presents the latest findings on the molecular effects of resveratrol and other stilbene derivatives on the various actors that modulate *NO bioavailability during oxidative stress.  相似文献   

3.
The regulation of vascular tone, vascular permeability, and thromboresistance is essential to maintain blood circulation and therefore tissue environments under physiological conditions. Atherogenic stimuli, including diabetes, dyslipidemia, and oxidative stress, induce vascular dysfunction, leading to atherosclerosis, which is a key pathological basis for cardiovascular diseases such as ischemic heart disease and stroke. We have proposed a novel concept termed "vascular failure" to comprehensively recognize the vascular dysfunction that contributes to the development of cardiovascular diseases. Vascular endothelial cells form the vascular endothelium as a monolayer that covers the vascular lumen and serves as an interface between circulating blood and immune cells. Endothelial cells regulate vascular function in collaboration with smooth muscle cells. Endothelial dysfunction under pathophysiological conditions contributes to the development of vascular dysfunction. Here, we address the barrier function and microtubule function of endothelial cells. Endothelial barrier function, mediated by cell-to-cell junctions between endothelial cells, is regulated by small GTPases and kinases. Microtubule function, regulated by the acetylation of tubulin, a component of the microtubules, is a target of atherogenic stimuli. The elucidation of the molecular mechanisms of endothelial dysfunction as a cellular mechanism for vascular failure could provide novel therapeutic targets of cardiovascular diseases.  相似文献   

4.
Endothelium-derived hyperpolarising factor (EDHF) is an important regulator of vascular tone; however, its identity is still unclear. Several different molecules have been suggested, the most recent of which is the 22-amino acid peptide C-type natriuretic peptide (CNP). CNP induces hyperpolarisation and relaxation of rat mesenteric resistance artery vascular smooth muscle through activation of natriuretic peptide receptor subtype C (NPR-C) and the same potassium channels as EDHF. In addition, this peptide is released from endothelial cells of the perfused rat mesenteric bed in response to endothelium-dependent vasodilators. Thus, CNP is likely to play a vital role in regulation of vascular tone. In addition, since there is evidence that up-regulation of EDHF occurs where normal endothelium function has been compromised, modulation of this pathway represents a novel target for therapeutics in the treatment of inflammatory cardiovascular pathologies characterised by endothelial dysfunction.  相似文献   

5.
Sir2 is a NAD+-dependent deacetylase, which regulates life span in multiple model organisms in response to caloric restriction. Mammalian homologues of Sir2 comprise a family of seven proteins termed sirtuins (SIRT1-SIRT7), which have gained considerable attention for their impact on several important physiological processes associated with metabolism and stress resistance. In addition, recent studies point to SIRT1 as a key regulator of vascular endothelial homeostasis controlling angiogenesis, vascular tone and endothelial dysfunction. Here, we review the emerging role of SIRT1 as an important modulator of signaling networks critical for maintaining vascular endothelial homeostasis and discuss SIRT1 as a potential therapeutic target for cardiovascular diseases in the adult.  相似文献   

6.
Sirtuin 3 (SIRT3) a mitochondrial enzyme that plays an important role in energy homeostasis, cardiac remodeling, and heart failure (HF). The expression of SIRT3 declines with advanced age, cardiovascular, and metabolic diseases. Accumulating evidence suggests that SIRT3 plays a critical role in protecting the heart from cardiac hypertrophy, cardiac dysfunction associated with HF, and in the protection of cardiac cells from stress-mediated cell death. Clinical studies have demonstrated that HF with preserved ejection fraction (HFpEF) in patients present with abnormalities in coronary microcirculation related to endothelial dysfunction and coronary microvascular rarefaction. Although SIRT3-mediated regulation of mitochondrial homeostasis and heart function has been intensively investigated, the effect of SIRT3 on endothelial cell (EC) glycolytic metabolism and microvascular function has not been well studied. ECs utilize glycolysis for generating ATP rather than oxidative phosphorylation to maintain their normal functions and promote angiogenesis and EC–cardiomyocyte interactions. Emerging evidence indicates that SIRT3 is involved in the regulation of endothelial metabolism and angiogenesis and thus affects the development of cardiovascular diseases associated with aging. This review will discuss the current knowledge of SIRT3 and its functional role on endothelial metabolism, cardiac function, and cardiovascular diseases.  相似文献   

7.
内皮祖细胞对于维持血管内皮完整性和血管稳态具有重要作用.增强EPC的数量和功能可使心血管疾病患者获益.炎症、氧化应激对内皮祖细胞动员及其功能发挥具有重要影响,本文着重综述炎症和氧化应激对内皮祖细胞动员的调控,并探讨增进内皮祖细胞数量和功能的相关治疗策略.  相似文献   

8.
Vascular endothelium is a key regulator of homeostasis. In physiological conditions it mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. However, endothelial dysfunction caused by physical injury of the vascular wall, for example during balloon angioplasty, acute or chronic inflammation, such as in atherothrombosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites. At the same time, the dysfunction promotes thrombin generation, fibrin deposition, and coagulation. The serine protease thrombin plays a pivotal role in the coagulation cascade. However, thrombin is not only the key effector of coagulation cascade; it also plays a significant role in inflammatory diseases. It shows an array of effects on endothelial cells, vascular smooth muscle cells, monocytes, and platelets, all of which participate in the vascular pathophysiology such as atherothrombosis. Therefore, thrombin can be considered as an important modulatory molecule of vascular homeostasis. This review summarizes the existing evidence on the role of thrombin in vascular inflammation.  相似文献   

9.
Many studies have shown that endothelial dysfunction is associated with a variety of cardiovascular diseases. The endothelium is one of the primary targets of circulating microvesicles. Besides, microRNAs emerge as important regulators of endothelial cell function. As a delivery system of microRNAs, microvesicles play an active and important role in regulating vascular endothelial function. In recent years, some studies have shown that microvesicles containing microRNAs regulate the pathophysiological changes in vascular endothelium, such as cell apoptosis, proliferation, migration and inflammation. These studies have provided some clues for the possible roles of microvesicles and microRNAs in vascular endothelial dysfunction‐associated diseases, and opened the door towards discovering potential novel therapeutic targets. In this review, we provide an overview of the main characteristics of microvesicles and microRNAs, summarizing their potential role and mechanism in endothelial dysfunction, and discussing the clinical application and existing problems of microvesicles for better translational applications.  相似文献   

10.
The vascular endothelium is a well-recognized target of damage for factors leading to increased cardiovascular risk. Among the agents playing an important role in cardiovascular homeostasis, nitric oxide and prostacyclin represent key markers of endothelial integrity. In the present work, we report for the first time the reduced expression of both endothelial nitric oxide synthase and cyclooxygenase-2 (COX-2) proteins, as well as decreased prostacyclin production, in unstimulated human endothelial cells from insulin-dependent diabetic mothers when compared to cells from non-diabetic, control subjects. According to a major role of COX-2 as a source of prostacyclin production even in unstimulated endothelial cells, prostacyclin production was concentration-dependently inhibited by the selective COX-2 inhibitor SC236. Overall, our results suggest a possible link between reduced endothelial COX-2 and NO-synthase expression and the increased risk of cardiovascular diseases affecting diabetic patients, and point to the use of endothelial cells from diabetic patients as a tool for investigating early dysfunction in pathological endothelium.  相似文献   

11.
心脑血管疾病是全球最主要的致死性疾病。活性氧(Reactive oxygen species,ROS)产生增多诱发血管内皮细胞损伤、平滑肌细胞迁移、增殖,是导致血管功能障碍、血管重构发生的重要机制。因此,氧化应激被认为是心脑血管疾病发生、发展的关键环节。但通过补充外源性抗氧化剂防治心脑血管疾病一直存在较大争议。机体可通过自身防御体系拮抗氧化应激,维持氧化-还原状态,如通过调控线粒体解偶联蛋白2(Uncoupling protein 2,UCP2)调节ROS生成,改善血管功能障碍及血管重构。本文就UCP2在内皮损伤及血管重构中的作用及机制展开综述,为深入探索这一潜在的防治心脑血管疾病的靶点提供信息。  相似文献   

12.
Polymorphonuclear leukocytes (PMNs) play an important role during inflammation in cardiovascular diseases. Human neutrophil peptides (HNPs) are released from PMN granules upon activation and are conventionally involved in microbial killing. Recent studies suggested that HNPs may be involved in the pathogenesis of vascular abnormality by modulating inflammatory responses and vascular tone. Since HNPs directly interact with endothelium upon release from PMNs in the circulation, we tested the hypothesis that the stimulation with HNPs of endothelial cells modulates the expression of vasoactive by-products through altering cyclooxygenase (COX) activity. When human umbilical vein endothelial cells were stimulated with purified HNPs, we observed a time- and dose-dependent increase in the expression of COX-2, whereas COX-1 levels remained unchanged. Despite an increased expression of COX-2 at the protein level, HNPs did not significantly enhance the COX-2 activity, thus the production of the prostaglandin PGI2. HNPs significantly induced the release of endothelin-1 (ET-1) as well as the formation of nitrotyrosine. The HNP-induced COX-2 and ET-1 production was attenuated by the treatment with the oxygen free radical scavenger N-acetyl-L-cysteine and the inhibitors of p38 MAPK and NF-kappaB, respectively. The angiontensin II pathway did not seem to be involved in the HNP-induced upregulation of COX-2 and ET-1 since the use of the angiotensin-converting enzyme inhibitor enalapril had no effect in this context. In conclusion, HNP may play an important role in the pathogenesis of inflammatory cardiovascular diseases by activating endothelial cells to produce vasoactive by-products as a result of oxidative stress.  相似文献   

13.
Endothelial function and coronary artery disease   总被引:20,自引:0,他引:20  
The endothelium produces a number of vasodilator and vasoconstrictor substances that not only regulate vasomotor tone, but also the recruitment and activity of inflammatory cells and the propensity towards thrombosis. Endothelial vasomotor function is a convenient way to assess these other functions, and is related to the long-term risk of cardiovascular disease. Lipids (particularly low density lipoprotein cholesterol) and oxidant stress play a major role in impairing these functions, by reducing the bioavailability of nitric oxide and activating pro-inflammatory signalling pathways such as nuclear factor kappa B. Biomechanical forces on the endothelium, including low shear stress from disturbed blood flow, also activate the endothelium increasing vasomotor dysfunction and promoting inflammation by upregulating pro-atherogenic genes. In contrast, normal laminar shear stress promotes the expression of genes that may protect against atherosclerosis. The sub-cellular structure of endothelial cells includes caveolae that play an integral part in regulating the activity of endothelial nitric oxide synthase. Low density lipoprotein cholesterol and oxidant stress impair caveolae structure and function and adversely affect endothelial function. Lipid-independent pathways of endothelial cell activation are increasingly recognized, and may provide new therapeutic targets. Endothelial vasoconstrictors, such as endothelin, antagonize endothelium-derived vasodilators and contribute to endothelial dysfunction. Some but not all studies have linked certain genetic polymorphisms of the nitric oxide synthase enzyme to vascular disease and impaired endothelial function. Such genetic heterogeneity may nonetheless offer new insights into the variability of endothelial function.  相似文献   

14.
The vascular endothelium is a multifunctional organ and is critically involved in modulating vascular tone and structure. Endothelial cells produce a wide range of factors that also regulate cellular adhesion, thromboresistance, smooth muscle cell proliferation, and vessel wall inflammation. Thus, endothelial function is important for the homeostasis of the body and its dysfunction is associated with several pathophysiological conditions, including atherosclerosis, hypertension and diabetes. Patients with diabetes invariably show an impairment of endothelium-dependent vasodilation. Therefore, understanding and treating endothelial dysfunction is a major focus in the prevention of vascular complications associated with all forms of diabetes mellitus. The mechanisms of endothelial dysfunction in diabetes may point to new management strategies for the prevention of cardiovascular disease in diabetes. This review will focus on the mechanisms and therapeutics that specifically target endothelial dysfunction in the context of a diabetic setting. Mechanisms including altered glucose metabolism, impaired insulin signaling, low-grade inflammatory state, and increased reactive oxygen species generation will be discussed. The importance of developing new pharmacological approaches that upregulate endothelium-derived nitric oxide synthesis and target key vascular ROS-producing enzymes will be highlighted and new strategies that might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated vascular complications.  相似文献   

15.
16.
Oxidative stress is one of the factors that could explain the pathophysiological mechanism of inflammatory conditions that occur in cardiovascular disease (CVD) and periodontitis. Such inflammatory response is often evoked by specific bacteria, as the lipopolysaccharide (LPS) of Porphyromonas gingivalis is a key factor in this process. The aim of this research was to study the role of mitochondrial dysfunction in peripheral blood mononuclear cells (PBMCs) from periodontitis patients and to evaluate the influence of LPS on fibroblasts to better understand the pathophysiology of periodontitis and its relationship with CVD. PBMCs from patients showed lower CoQ10 levels and citrate synthase activity, together with high levels of ROS production. LPS-treated fibroblasts provoked increased oxidative stress and mitochondrial dysfunction by a decrease in mitochondrial protein expression, mitochondrial mass, and mitochondrial membrane potential. Our study supports the hypothesis that LPS-mediated mitochondrial dysfunction could be at the origin of oxidative stress in periodontal patients. Abnormal PBMC performance may promote oxidative stress and alter cytokine homeostasis. In conclusion, mitochondrial dysfunction could represent a possible link to understanding the interrelationships between two prominent inflammatory diseases: periodontitis and CVD.  相似文献   

17.
The microcirculation is a complex and integrated system, transporting oxygen and nutrients to the cells. The key component of this system is the endothelium, contributing to the local balance between pro and anti-inflammatory mediators, hemostatic balance, as well as vascular permeability and cell proliferation. A constant shear stress maintains vascular endothelium homeostasis while perturbed shear stress leads to changes in secretion of vasodilator and vasoconstrictor agents. Increased oxidative stress is a major pathogenetic mechanism of endothelial dysfunction by decreasing NO bioavailability, promoting inflammation and participating in activation of intracellular signals cascade, so influencing ion channels activation, signal transduction pathways, cytoskeleton remodelling, intercellular communication and ultimately gene expression. Targeting the microvascular inflammation and oxidative stress is a fascinating approach for novel therapies in order to decrease morbidity and mortality of chronic and acute diseases.  相似文献   

18.
Obesity is involved in several cardiovascular diseases including coronary artery disease and endothelial dysfunction. Endothelial Endothelium vasodilator and vasoconstrictor agonists play a key role in regulation of vascular tone. In this study, we evaluated coronary vascular response in an 8 weeks diet-induced obese C57BL/6 mice model. Coronary perfusion pressure in response to acetylcholine in isolated hearts from obese mice showed increased vasoconstriction and reduced vasodilation responses compared with control mice. Vascular nitric oxide assessed in situ with DAF-2 DA showed diminished levels in coronary arteries from obese mice in both basal and acetylcholine-stimulated conditions. Also, released prostacyclin was decreased in heart perfusates from obese mice, along with plasma tetrahydrobiopterin level and endothelium nitric oxide synthase dimer/monomer ratio. Obesity increased thromboxane A2 synthesis and oxidative stress evaluated by superoxide and peroxynitrite levels, compared with control mice. Obese mice treated with apocynin, a NADPH oxidase inhibitor, reversed all parameters to normal levels. These results suggest that after 8 weeks on a high-fat diet, the increase in oxidative stress lead to imbalance in vasoactive substances and consequently to endothelial dysfunction in coronary arteries.  相似文献   

19.
The microcirculation is a complex and integrated system, transporting oxygen and nutrients to the cells. The key component of this system is the endothelium, contributing to the local balance between pro and anti-inflammatory mediators, hemostatic balance, as well as vascular permeability and cell proliferation. A constant shear stress maintains vascular endothelium homeostasis while perturbed shear stress leads to changes in secretion of vasodilator and vasoconstrictor agents. Increased oxidative stress is a major pathogenetic mechanism of endothelial dysfunction by decreasing NO bioavailability, promoting inflammation and participating in activation of intracellular signals cascade, so influencing ion channels activation, signal transduction pathways, cytoskeleton remodelling, intercellular communication and ultimately gene expression. Targeting the microvascular inflammation and oxidative stress is a fascinating approach for novel therapies in order to decrease morbidity and mortality of chronic and acute diseases.  相似文献   

20.
Ephedrine is a mixed adrenergic agonist, stimulating both alpha- and beta-adrenergic receptors. The effects of ephedrine use include increases in heart rate, cardiac output, peripheral resistance, and blood pressure, and its use is associated with serious cardiovascular events such as stroke, arrhythmias, and myocardial infarction. The vascular endothelium plays a fundamental role in the regulation of vascular tone by releasing vasoactive factors such as nitric oxide (NO). The loss of NO bioactivity, often referred to as endothelial dysfunction, is characterized by the loss of endothelium-dependent vasodilation and is thought to be a common pathway for cardiovascular events such as vasospasm, hypertension, and myocardial infarction. Since endothelial dysfunction is characterized by loss of NO activity, and since ephedrine and endothelial dysfunction may be associated with similar cardiovascular events, the current study was undertaken to determine the effect of inhibition of NO production on responses to ephedrine in the rat. A sodium nitroprusside (SNP) infusion procedure was used to restore baseline vascular parameters to pre-L-NAME levels, allowing for direct comparison of agonist responses before and after NOS inhibition. The results demonstrate that the vascular response to ephedrine in the rat is modulated by NO and that NO production in response to ephedrine may be secondary to beta 2-receptor stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号