首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
S O Enfors  K K?hler  A Veide 《Bioseparation》1990,1(3-4):305-310
Partitioning of beta-galactosidase in aqueous two-phase systems of poly(ethylene glycol) and potassium phosphate is reviewed. The affinity of Escherichia coli beta-galactosidase for the PEG-rich phase dominates also in beta-galactosidase fusion proteins and the concept of using beta-galactosidase as an affinity handle for extraction of other proteins, after fusion, is discussed. A hypothesis is presented, assuming that tryptophan residues at the surface of beta-galactosidase is responsible for its partitioning to the PEG rich phase, and the concept of poly-tryptophan handles fused to the target protein for extraction is introduced.  相似文献   

2.
Four different beta-galactosidase fusion proteins have been partitioned in poly(ethylene glycol) (PEG) 4000/potassium phosphate aqueous two-phase systems. The partition coefficients (K) of staphylococcal protein A-beta-galactosidase (SpA beta gal) (K = 3.5) and staphylococcal protein A-streptococcal protein G-beta-galactosidase (AG beta gal) (K = 2.8) were compared with the partition coefficients of their constituent molecules, beta-galactosidase, SpA, and protein AG. It was found that by fusing beta-galactosidase to the smaller proteins SpA and protein AG, their partition coefficients were increased four to five times. Experimental data were fitted into, and found to agree with, the Albertsson partition model of interacting molecules. The compatibility with PEG and potassium phosphate of beta-galactosidase, SpA, and two different versions of the SpA beta gal protein, displayed as precipitation curves, showed a relationship to the protein partition coefficients in PEG/potassium phosphate systems. High solubility in one phase component was accompanied by preferential partitioning to the phase rich in the same component in the PEG/potassium phosphate system. Also, a changed linker region in SpA beta gal resulted in a more soluble protein. This, together with the improved K values of the target proteins by fusion, shows that it is possible to use beta-galactosidase as an affinity handle.  相似文献   

3.
Phenethyl beta-d-galactopyranoside (PEG) was hydrolyzed by the beta-galactosidase of Escherichia coli to form the toxic product phenethyl alcohol. Salmonella typhimurium did not hydrolyze PEG. In mixed culture, the ratio of S. typhimurium to E. coli was increased by growing the organisms in lactose broth containing 2.5% PEG. The high concentration of PEG required for inhibition of E. coli can be attributed to inadequate cell permeability rather than to prevention of beta-galactosidase induction.  相似文献   

4.
This report continues or examination of the effect of genetically engineered charge modifications on the partitioning behavior of proteins in aqueous two-phase extration. The genetic modifications consisted of the fusion of charged peptide tails to beta-galactosidase and charge-change point mutations to T4 lysozyme. Our previous article examined the influence of these charge modifications on partitioning as a function of interfacial potential difference. In this study, we examined charge directed partitioning behavior in PEG/dextran systems containing small amounts of the charged polymers diethylaminoethyl-dextran (DEAE-dextran) or dextran sulfate. The best results were obtained when attractive forces between the protein and polymer were present. Nearly 100% of the beta-galactosidase, which carries a net negative charge, partitioned to the DEAE-dextran-rich phase regardless of whether the phase was dextran or PEG. In these cases, cloudiness of the protein-rich phases suggest that strong charge interactions resulted in protein/polymer aggregation, which may have contributed to the extreme partitioning. Unlike the potentialdriven partitioning reported previously, consistent partitioning trends were observed as a result of the fusion tails, with observed shifts in partition coefficient (K(p)) of up to 37-fold. However, these changes could not be solely attributed to charge-based interactions. Similarly, T4 lysozyme, carrying a net positive charge, partitioned to the dextran sulfate-containing phase, and displayed four- to sevenfold shifts in K(p) as a result of the point mutations. These shifts were two to four times stronger than those observed for potential driven partitioning. Little effect on partitioning was observed when the protein and polymer had the same charge, with the exception of beta-galactosidase with polyarginine tails. The high positive charge density of these tails provided for a localized interaction with the dextran sulfate, and resulted in 2- to 15-fold shifts in K(p). (c) 1995 John Wiley & Sons, Inc.  相似文献   

5.
Recombinant mammalian cultures for heterologous gene expression typically involve cells traversing the cell cycle. Studies were conducted to characterize rates of accumulation of intracellular foreign protein in single cells during the cell cycle of Chinese hamster ovary (CHO) cells transfected with an expression vector containing the gene for dihydrofolate reductase (dhfr) and the lacZ gene for bacterial beta-galactosidase (a nonsecreated protein). The lacZ gene was under the control of the constitutive cytomegalovirus promoter. These normally attachment-grown cells were adapted to suspension culture in 10(-7) M methotrexate, and a dual-laser flow cytometer was used to simultaneously determine the DNA and foreign protein (beta-galactosidase) content of single living cells. Expression of beta-galactosidase as a function of cell cycle phase was evaluated for cells in the exponential growth phase, early plateau phase, and inhibited traverse of the cell cycle during exponential growth. The results showed that the beta-galactosidase production rate is higher in the S phase than that in the G1 or G2/M phases. Also, when cell cycle progression was stopped at the S phase by addition of aphidicolin, beta-galactosidase content in single cells was higher than that in exponential phase or plateau phase cells and increased with increasing culture time. Although the cells did not continue to divide after aphidicolin addition, the production of beta-galactosidase per unit volume of culture was very similar to that in normal exponential growth. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
We have characterized expression of beta-galactosidase from a plasmid cloning vehicle, pBGP120, which carries most of the lacZ gene and contains a single EcoRI site near the end of lacZ. In addition, we have examined expression of heterologous DNA inserted at the position of the EcoRI site. The EcoRI site was shown to be within the sequence coding for beta-galactosidase and its precise location and phase were deduced. Insertion of heterologous EcoRI-generated DNA fragments altered the molecular weight of the plasmid-encoded beta-galactosidase polypeptide. Those insertions that were in the correct phase were expressed at a high level as a fused protein. The different forms of beta-galactosidase polypeptides produced by various hybrid plasmids were all stable proteins. The level of expression of the plasmid-encoded beta-galactosidase was several times higher than maximal expression of chromosome-encoded beta-galactosidase, suggesting that expression is proportional to gene copy number. The expression of the plasmid lacZ gene was controlled by cyclic AMP. When grown in a cya strain (DG74), expression was dependent on exogenous cyclic AMP. Although in normal strains there was insufficient lac repressor to inactivate all copies of the plasmid, repressor regulation was restored when the plasmid was grown in a strain (M96) that overproduces the lac repressor.  相似文献   

7.
Spray columns can be used to isolate and purify proteins using the two-phase aqueous extraction technique based on polyethylene glycol (PEG) and dextran. The fractional dispersed phase (PEG) holdup and overall mass transfer coefficients were measured in a 9.7 mm i.d. spray column. We found that the dispersed phase holdup increased with increasing PEG phase velocity. The overall mass transfer coefficients for bovine serum albumin, normalized for the PEG holdup, were found to be independent of the PEG phase velocity. This result was expected, since true mass transfer coefficients do not vary with phase velocity.  相似文献   

8.
The partition behavior of glycomacropeptide (GMP) was determined in polyethylene glycol (PEG) and sodium citrate aqueous two-phase systems (ATPS). It was found that the partitioning of GMP depends on PEG molar mass, tie line length, pH, NaCl concentration and temperature. The obtained data indicates that GMP is preferentially partitioned into the PEG phase without addition of NaCl at pH 8.0. Larger tie line lengths and higher temperatures favor GMP partition to the PEG phase. Furthermore, it was verified that PEG molar mass and concentration have a slight effect on GMP partition. The increase in the molar mass of PEG induces a reduction of the protein solubility in the top PEG rich phase, being shown that the use of PEG1500 is beneficial for the extraction of GMP. A protein recovery higher than 85% was obtained in the top phase of these systems, clearly demonstrating its suitability as a starting point for the separation of GMP.  相似文献   

9.
M D King  D Marsh 《Biochemistry》1989,28(13):5643-5647
The polymorphic phase behavior of 1-palmitoyl-2-lyso-sn-glycero-3-phosphocholine dispersions in excess water has been studied as a function of temperature and poly(ethylene glycol) (PEG) concentration, using proton dipolar-decoupled 31P NMR spectroscopy and turbidity measurements. The phase behavior was found to depend on both lipid concentration and PEG concentration, and most of the NMR experiments were conducted at a lipid concentration of 15 mg/mL. At low PEG concentrations (0-12 wt %), a thermotropic transition occurs at 3-5 degrees C with increasing temperature, from an interdigitated lamellar gel (L beta i) phase to a normal micellar phase. At intermediate PEG concentrations (12-20 wt %), thermotropic transitions take place with increasing temperature, first from the lamellar gel phase to a fluid cubic (Q alpha) phase and then at higher temperatures from the cubic phase to the micellar phase. At intermediate PEG concentrations above the former range (20-30 wt %), thermotropic transitions take place with increasing temperature, first from the lamellar gel phase to the cubic phase, then from the cubic phase to a normal hexagonal (HI) phase, and finally from the hexagonal phase to the micellar phase. At high PEG concentrations (greater than 30 wt %), a thermotropic transition takes place with increasing temperature from the lamellar gel phase directly to the fluid hexagonal phase. At these high PEG concentrations, the micellar phase is not attained within the accessible temperature range (less than or equal to 90 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The insect cell (Sf9)-baculovirus (AcNPV) expression system was employed for the synthesis of beta-galactosidase, a model heterologous protein. In the recombinant virus studied, the lacZ gene is fused to a portion of the polyhedrin structural gene and is under the control of the polyhedrin promoter. The effect of the multiplicity of infection (MOI) on product titer was determined by infecting cells with MOI values ranging from 0 to 100 and monitoring the production of beta-galactosidase with time. The relationship between final product titer and MOI was dependent on the growth phase of the cells prior to infection. The final product titer from cells infected in the early exponential phase was relatively independent of MOI. For cells infected in late-exponential phase there was a logarithmic relationship between the final beta-galactosidase titer and the MOI used, with the highest MOI studied resulting in greatest protein synthesis. The synthesis and degradation rates of beta-galactosidase were investigated by a pulse-chase technique using L-[(35)S]-methionine. At 24 h postinfection, the degradation rate is of the same order of magnitude as the synthesis rate. However, the synthesis rate of beta-galactosidase increases dramatically at 96 h postinfection. During this later period, the degradation rate is negligible. Although degradation of recombinant protein occurs in this system, degradation activity declines as infection proceeds and is insignificant late in intention when recombinant protein expression is intense.  相似文献   

11.
Interaction properties of the novel HPLC silica gel-poly(ethylene glycol) (PEG) bonded phase were evaluated applying polymeric test substances, viz. polystyrenes, poly(methyl methacrylate)s, poly(ethylene oxide)s and poly(2-vinyl pyridine)s, and eluents of different polarities. Silanols on the silica gel surface are well shielded by the PEG phase, and silanophilic adsorption of macromolecules is suppressed in comparison with most silica C(18) bonded phases. The adsorption of solutes on the -OH groups of the PEG phase seems to be low as well. The partition of macromolecules in favor of the PEG phase is inferior to that observed in case of the silica C(18) phases. The volume of the PEG bonded phase is small and it is supposed that the PEG chains assume flat conformation on the silica gel surface.  相似文献   

12.
Reverse micelles are formed in apolar solvents by spontaneous aggregation of surfactants. Surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) is most often used for the reverse micellar extraction of enzymes. However, the inactivation of enzyme due to strong interaction with AOT molecules is a severe problem. To overcome this problem, the AOT/water/isooctane reverse micellar system was modified by adding short chain polyethylene glycol 400 (PEG 400). The modified AOT reverse micellar system was used to extract Mucor javanicus lipase from the aqueous phase to the reverse micellar phase. The extraction efficiency (E) increased with the increase in PEG 400 addition and the maximum E in PEG 400 modified system was twofold higher than that in the PEG 400-free system. Upon addition of PEG 400, the water activity (a(w)) of aqueous phase decreased, whereas a(w) of reverse micellar phase increased. The circular dichroism spectroscopy analysis revealed that PEG 400 changes the secondary and tertiary structure of lipase. The maximum specific activity of lipase extracted in PEG 400-modified reverse micellar system was threefold higher than that in the PEG-free system.  相似文献   

13.
The cell cycle dependency of foreign gene expression in recombinant mouse L cells was investigated. Two different recombinant mouse L cell lines having the glucocorticoid receptor-encoding gene and the lacZ reporter gene were used in this study. The lacZ gene expression was controlled by the glucocorticoid-inducible mouse mammary tumor virus (MMTV) promoter in both cell lines. In "M4" cells the gr gene was under the control of another MMTV promoter, but in "R2" cells it was under the control of the constitutive Rous sarcoma virus promoter. These normally attachment-grown cells were adapted to suspension culture, and a dual-laser flow cytometer was used to simultaneously determine the DNA and foreign protein (beta-galactosidase) content of single living cells. Expression of beta-galactosidase as a function of cell cycle phase was evaluated for cells in exponential growth without any addition of the glucocorticoid inducer, dexamethasone. Cell cycle positions in the S phase were estimated on the basis of DNA content per cell, and position in the G1 phase was estimated on the basis of cell size as measured by pulse-width time of flight. The results showed that beta-galactosidase synthesis occurred through all cell cycle phases, but the expression rate in the G1 phase was much lower than that in the S and G2/M phases in both cell lines. On the basis of cell size analysis, beta-galactosidase expression in M4 cells (with autoinducible promoter) was found to be higher than that in R2 cells (with inducible promoter) during the G1 phase. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
Soluble recombinant Vitreoscilla hemoglobin was purified from E. coli lysate by sequential two-phase extraction techniques. Extraction of lysate containing VHb in PEG/dextran gave a 3.6-fold increase in VHb purity in the PEG-rich phase via a size exclusion mechanism. Further extraction of the recovered PEG phase in PEG/sodium sulfate gave an additional 2.0-fold increase in purity in the PEG-rich phase due to an electrostatic mechanism. Final extraction of the PEG phase in PEG/magnesium sulfate gave an additional 1.3-fold increase in VHb purity in the magnesium sulfate-rich phase. The final yield from the extractive purification was 47% with purity of VHb estimated to be greater than 95%. Yields from the sulfate salt extractions are essentially quantitative due to the extreme partitioning behavior of VHb in these systems. VHb partition coefficients as large as 46 in PEG/sodium sulfate and as small as 0.06 in PEG/magnesium sulfate were observed. Similar small partition coefficients were obtained with PEG/manganese sulfate extractions. This dramatic effect of divalent cation content on the partition coefficient of VHb in PEG/sulfate salt systems was investigated by pH and magnesium ion titration experiments. Results show the effect to be largest and nearly constant for pH values greater than 6.0 and diminished at lower pH values. A model based on magnesium ion binding to negatively charged amino acids is shown to correlate with the data well. Based on model formulation and the partitioning behavior of contaminant proteins, the observed effect is expected to be applicable to other proteins.  相似文献   

15.
We have investigated the effects of poly(ethylene glycol) (PEG) on the structure and phase behavior of multilamellar vesicles of dihexadecylphosphatidylcholine (DHPC-MLVs) using an X-ray diffraction method. At low concentrations of PEG-6K (MW = 7500), DHPC-MLVs were in an interdigitated gel (L(beta)I) phase, a gel phase with interdigitated hydrocarbon chains. At around 24% (w/v) PEG 6K, a phase transition from the L(beta)I phase to a bilayer gel phase occurred in the DHPC-MLVs, and above this concentration, they were in a bilayer gel phase. On the other hand, ethylene glycol (EG), the monomer of PEG, did not induce this phase transition in the DHPC-MLVs. A mechanism of this phase transition is proposed and discussed; a decrease in the repulsive interaction between the head groups of the phospholipids in the bilayer gel phase with an increase in PEG concentration, which is due to a decrease in the cross-sectional area of the head group region by osmotic stress, may be the main reason for this phase transition.  相似文献   

16.
1. The pretreatment induction method of studying the formation of beta-galactosidase in E. coli B has been described. 2. It has been found that E. coli B cells have their maximum capacity to form beta-galactosidase, in response to a constant induction stimulus, when they are in the stationary phase of the growth cycle. 3. The concentration of inductor, the nature of the nitrogen source, the duration of the assimilatory phase, oxygen tension, and temperature are factors which affect, and may limit, the rate of beta-galactosidase formation. 4. When limitations imposed by these factors were removed, the time course of induced beta-galactosidase formation was strictly linear from the onset. 5. The implications of this finding were discussed and a new theory of the mechanism of enzyme formation has been proposed. 6. A very satisfactory method of synthesis of ortho-nitrophenol-alpha-D-galactoside has been described. This substance is a suitable chromogenic substrate for the specific determination of alpha-galactosidase activity. 7. Preliminary experiments using this substrate have confirmed the results of respiration studies and shown that in E. coli B alpha-galactosidase formation may be induced by beta- as well as by alpha-galactosides.  相似文献   

17.
Cyclodextrin homologues (CDs), produced by cyclodextrin glycosyltransferase (CGTase), were simultaneously partitioned in aqueous two-phase system (ATPS). Partition coefficients of CDs were measured in PEG/salt and PEG/dextran systems. Phosphate, citrate, sulfate were tested as salt. ATPS of PEG/salt and PEG/dextran had the partition coefficients of the CDs, larger than unity. However, PEG/dextran system was observed better than PEG/salt as CGTase activity decreased sharply with salt concentration. Enzymatic reaction occurred mainly in PEG-rich bottom phase because of the low partition coefficient of CGTase. The resulting CDs transferred to the PEG-rich top phase, obeying the diffusional partition. In the ATPS of 7% PEG (M.W. 20,000) and 9% dextran (M.W. 40,000), 7 mg/ml of CDs were obtained in top phase at 4.5 hours.  相似文献   

18.
The partitioning behaviour of a drug (capsaicin)-responsive NADH oxidase (tNOX) activity released from HeLa ceIls by low pH treatment followed by heat and proteinase K was determined. When partitioned in a standard 6.4% PEG 3350/6.4% dextran T-500 two-phase system, the bulk of the tNOX activity was in the dextran-rich lower phase. The activity was inhibited by and bound to the triazine dye, Cibacron blue. Affinity partition, where the Cibacron blue was coupled to amino PEG 5000 and added to the first two-phase separation step, resulted in the partitioning of activity to the upper PEG phase. A second partition with PEG-salts resulted in the release of the tNOX from the Cibacron blue–amino PEG enriched phase into the salt-enriched lower phase. The phase-purified protein exhibited anomalous behavior and tended to multimerize in sodium dodecyl sulphate (SDS) prior to SDS-polyacrylamide gel electrophoresis (PAGE). Multimerization appeared to be enhanced by PEG. The multimerization was enhanced with the reduced protein in the presence of detergent prior to SDS–PAGE. In addition, the activity was precipitated by PEG 8000 at concentrations between 6 and 30% by weight. In the presence of or after exposure to PEG 3350 or PEG 8000, the protein could not be detected by Western blot analysis after SDS–PAGE suggesting that the protein failed to enter the gel even though other HeLa cell surface proteins were unaffected. The anomalous multimerization behavior has thus far precluded the use of phase partition as a practical purification step for the oxidase.  相似文献   

19.
类弹性蛋白(Elastin-like polypeptides,ELPs)是属于弹性蛋白中的一种且具有温控性的生物大分子,本文研究拥挤试剂对不同拓扑结构ELPs相变温度的影响,利用温控-紫外分光光度计研究其相变特性,结果发现,随着PEG2000浓度的增加,T-E-F的相变温度下降11.9~17.1℃;在固定Tadpole-like-E浓度下,随着PEG2000浓度的增加,Tadpole-like-E的相变温度降低11.5~16℃,其中,25 μmol/L的Tadpole-like-E其相变速度缓慢;ELPs浓度越大,其相变温度降低愈大,且PEG2000影响ELPs相变温度的趋势与ELPs的拓扑结构关系不大。另外,在简单的PBS缓冲溶液中加入PEG2000,可以使E-C在浓度<0.5 mol/L的Na2CO3中发生相变,且随着PEG2000浓度的增加,E-C相变温度逐渐降低。本研究为今后ELPs在复杂体系的应用提供前期的基础研究。  相似文献   

20.
Transposon Tn917-LTV1 was used to produce a collection of Lactococcus lactis strains with fusion of a promoterless lacZ gene to chromosomal loci. Screening 2,500 Tn917-LTV1 integrants revealed 222 that express beta-galactosidase on plates at 30 degrees C. Pulsed-field gel electrophoresis revealed Tn917-LTV1 insertions in at least 13 loci in 15 strains analyzed. Integrants in which beta-galactosidase expression was regulated by temperature or pH and/or arginine concentration were isolated. In most cases, the regulation observed on plates was reproducible in liquid medium. One integrant, PA170, produces beta-galactosidase at pH 5.2 but not at pH 7.0, produces more beta-galactosidase at 15 degrees C than at 30 degrees C, and has increased beta-galactosidase activity in the stationary phase. DNA fragments potentially carrying promoters from selected Lactococcus lactis integrants were cloned in Escherichia coli. A new promoter probe vector, pAK80, containing promoterless beta-galactosidase genes from Leuconostoc mesenteroides subsp. cremoris and the Lactococcus lactis subsp. lactis biovar diacetylactis citrate plasmid replication region was constructed, and the lactococcal fragments were inserted. Plasmid pAK80 was capable of detecting and discriminating even weak promoters in Lactococcus lactis. When inserted in pAK80, the promoter cloned from PA170 displayed a regulated expression of beta-galactosidase analogous to the regulation observed in PA170.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号