首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An early step in the biosynthesis of dermatan sulfate is polymerization to chondroitin, which then is modified by the D-glucuronyl C5-epimerase and mainly 4-O-sulfotransferase. The final structure of the dermatan sulfate side chains varies and our aim was to identify, which of the two enzymes that are crucial to generate dermatan sulfate copolymeric structures in tissues. Dermatan sulfate side chains of biglycan and decorin were prepared from fibroblasts and nasal and articular chondrocytes and characterized regarding detailed structure. Microsomes were prepared from these cells and the activities of D-glucuronyl C5-epimerase and 4-O-sulfotransferase were determined. Chondrocytes from nasal cartilage synthesized biglycan and decorin containing 10%, articular chondrocytes 20--30%, and fibroblast 80% of the uronosyl residues in the l-iduronyl configuration. All three tissues contained high amount of 4-O-sulfotransferase activity. The activity of d-glucuronyl C5-epimerase showed different relationships. Fibroblasts contained a high level of the epimerase activity, articular chondrocytes intermediary activity, and in nasal cartilage it was barely detectable. The data indicate that the activity of the d-glucuronyl C5-epimerase is the main factor for formation of dermatan sulfate in tissues.  相似文献   

2.
Proteoglycans (PGs) comprise a group of extracellular matrix macromolecules which play an important role in matrix biology. In this study, normal human skin and gingival fibroblast cultures were incubated with transforming growth factor-beta 1 (TGF-beta 1), and the expression of three PGs, viz. biglycan (PGI), decorin (PGII), and versican (a large fibroblast proteoglycan) was examined. The results indicate that TGF-beta 1 (5 ng/ml) markedly increased the expression of biglycan (up to 24-fold) and versican (up to 6-fold) mRNAs and the enhancement of biglycan expression was coordinate with elevated type I procollagen gene expression in the same cultures. In contrast, the expression of decorin mRNA was markedly (up to approximately 70%) inhibited by TGF-beta 1. The response to TGF-beta 1 was similar in both skin and gingival fibroblasts, although the gingival cells were clearly more responsive to stimulation by TGF-beta 1 with respect to biglycan gene expression. Analysis of 35S-labeled proteoglycans in the culture media of skin and gingival fibroblasts also revealed stimulation of biglycan and versican production, and reduction in decorin production. Quantitation of both [35S]sulfate and [3H]leucine-labeled decorin in cell culture media by immunoprecipitation revealed a 50% reduction in decorin production in cell cultures treated with TGF-beta 1. This TGF-beta 1-elicited reduction was accompanied by an apparent increase in the size of the decorin molecules, although the size of the core protein was not altered, as judged by Western immunoblotting following chondroitinase ABC digestion. Analysis of the proteoglycans in the matrix and membrane fractions also revealed increased amounts of versican in cultures treated with TGF-beta 1. These results indicate differential regulation of PG gene expression in fibroblasts by TGF-beta 1, and these observations emphasize the role of PGs in the extracellular matrix biology and pathology.  相似文献   

3.
4.
A novel sulfotransferase activity was discovered in fetal bovine serum using pig skin dermatan sulfate as an acceptor and [35S]3'-phosphoadenosine 5'-phosphosulfate as a sulfate donor. The enzyme was separated from chondroitin:GalNAc 6-O-sulfotransferase by chromatographic techniques. Enzymatic analysis of the reaction products demonstrated that the enzyme transferred sulfate to the C6 position of the GalNAc residue in the sequence -iduronic acid alpha1-3GalNAc beta1-4iduronic acid-. Thus, the enzyme has been identified as a hitherto unreported dermatan sulfate:GalNAc 6-O-sulfotransferase. The finding is in sharp contrast to the current concept that in dermatan sulfate biosynthesis GalNAc 4-O-sulfation is a prerequisite for iduronic acid formation by C5 epimerase.  相似文献   

5.
6.
In the mechanically active environment of the artery, cells sense mechanical stimuli and regulate extracellular matrix structure. In this study, we explored the changes in synthesis of proteoglycans by vascular smooth muscle cells in response to precisely controlled mechanical strains. Strain increased mRNA for versican (3.2-fold), biglycan (2.0-fold), and perlecan (2.0-fold), whereas decorin mRNA levels decreased to a third of control levels. Strain also increased versican, biglycan, and perlecan core proteins, with a concomitant decrease in decorin core protein. Deformation did not alter the hydrodynamic size of proteoglycans as evidenced by molecular sieve chromatography but increased sulfate incorporation in both chondroitin/dermatan sulfate proteoglycans and heparan sulfate proteoglycans (p < 0.05 for both). Using DNA microarrays, we also identified the gene for the hyaluronan-linking protein TSG6 as mechanically induced in smooth muscle cells. Northern analysis confirmed a 4.0-fold increase in steady state mRNA for TSG6 following deformation. Size exclusion chromatography under associative conditions showed that versican-hyaluronan aggregation was enhanced following deformation. These data demonstrate that mechanical deformation increases specific vascular smooth muscle cell proteoglycan synthesis and aggregation, indicating a highly coordinated extracellular matrix response to biomechanical stimulation.  相似文献   

7.
8.
Fibrosis is a common pathological feature observed in muscles of patients with Duchenne muscular dystrophy (DMD). Biglycan and decorin are small chondroitin/dermatan sulfate proteoglycans in the muscle extracellular matrix (ECM) that belong to the family of structurally related proteoglycans called small leucine-rich repeat proteins. Decorin is considered an anti-fibrotic agent, preventing the process by blocking TGF-beta activity. There is no information about their expression in DMD patients. We found an increased amount of both proteoglycans in the ECM of skeletal muscle biopsies obtained from DMD patients. Both biglycan and decorin were augmented in the perimysium of muscle tissue, but only decorin increased in the endomysium as seen by immunohistochemical analyses. Fibroblasts were isolated from explants obtained from muscle of DMD patients and the incorporation of radioactive sulfate showed an increased synthesis of both decorin and biglycan in cultured fibroblasts compared to controls. The size of decorin and biglycan synthesized by DMD and control fibroblasts seems to be similar in size and anion charge. These findings show that decorin and biglycan are increased in DMD skeletal muscle and suggest that fibroblasts would be, at least, one source for these proteoglycans likely playing a role in the muscle response to dystrophic cell damage.  相似文献   

9.
10.
Human embryonic skin fibroblasts were pretreated with transforming growth factor-beta (TGF-beta) for 6 h and then labeled with [35S]sulphate and [3H]leucine for 24 h. Radiolabeled proteoglycans from the culture medium and the cell layer were isolated and separated by isopycnic density-gradient centrifugation, followed by gel, ion-exchange and hydrophobic-interaction chromatography. The major proteoglycan species were examined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate before and after enzymatic degradation of the polysaccharide chains. The results showed that TGF-beta increased the production of several different 35S-labelled proteoglycans. A large chondroitin/dermatan sulphate proteoglycan (with core proteins of approximately 400-500 kDa) increased 5-7-fold and a small dermatan sulphate proteoglycan (PG-S1, also termed biglycan, with a core protein of 43 kDa) increased 3-4-fold both in the medium and in the cell layer. Only a small effect was observed on another dermatan sulphate proteoglycan, PG-S2 (also named decorin). These observations are generally in agreement with results of other studies using similar cell types. In addition, we have found that the major heparan sulphate proteoglycan of the cell layer (protein core approximately 350 kDa) was increased by TGF-beta treatment, whereas all the other smaller heparan sulphate proteoglycans with protein cores from 250 kDa to 30 kDa appeared unaffected. To investigate whether TGF-beta also influences the glycosaminoglycan (GAG) chain-synthesizing machinery, we also characterized GAGs derived from proteoglycans synthesized by TGF-beta-treated cells. There was generally no increase in the size of the GAG chains. However, the dermatan sulphate chains on biglycan and decorin from TGF-beta treated cultures contained a larger proportion of D-glucuronosyl residues than those derived from untreated cultures. No effect was noted on the 4- and 6-sulphation of the GAG chains. By the use of p-nitrophenyl beta-D-xyloside (an initiator of GAG synthesis) it could be demonstrated that chain synthesis was also enhanced in TGF-beta-treated cells (approximately twofold). Furthermore, the dermatan sulphate chains synthesized on the xyloside in TGF-beta-treated fibroblasts contained a larger proportion of D-glucuronosyl residues than those of the control. These novel findings indicate that TGF-beta affects proteoglycan synthesis both quantitatively and qualitatively and that it can also change the copolymeric structure of the GAG by affecting the GAG-synthesizing machinery. Altered proteoglycan structure and production may have profound effects on the properties of extracellular matrices, which can affect cell growth and migration as well as organisation of matrix fibres.  相似文献   

11.
In order to understand the relationship between specific growth factors and matrix synthesis by periodontal cells, we have investigated the effects of platelet-derived growth factor BB (PDGF-BB), insulin-like growth factor-I (IGF-1), and growth hormone on DNA and proteoglycan synthesis by cultured human gingival and periodontal ligament fibroblasts in vitro. PDGF-BB and IGF-1, but not growth hormone, were mitogenic for both periodontal ligament fibroblasts and gingival fibroblasts, although the periodontal ligament cells responded more strongly. The mitogenic response was accompanied by alterations in expression of matrix proteoglycan mRNA. For both the gingival and periodontal ligament cells, there was a decrease in mRNA for decorin and an increase in mRNA for versican following exposure to IGF-1 and PDGF-BB. Although no change was seen in response to PDGF, biglycan mRNA level was increased by IGF-1 in periodontal ligament fibroblasts. With the gingival fibroblats, biglycan mRNA levels were unaffected by IGF-1, PDGF-BB, or growth hormone. These findings suggest variable responses of fibroblasts to growth factors depending upon anatomical site within the periodontium. Moreover, there appears to be a correlation between cell proliferation and the types of proteoglycan synthesised with decorin expression being suppressed, and versican being increased during fibroblast proliferation. J. Cell. Physiol. 174:353–361, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Proteolysis of the extracellular matrix influences vascular growth. We examined the expression of ADAMTS-1, -4, and -5 metalloproteinases and their proteoglycan substrates versican, decorin, and biglycan as human umbilical vein endothelial cells (HUVECs) formed tubes within type I collagen gels in vitro. Tubulogenic and control HUVEC cultures expressed low levels of ADAMTS-1 and -5 mRNAs, but ADAMTS-4 mRNA was relatively abundant and was significantly elevated (as was ADAMTS-4 protein) in tubulogenic cultures versus controls. Immunocytochemistry revealed ADAMTS-4 in f-actin- and cortactin-positive podosome-like puncta in single cells and mature tubes. Tubulogenic and control cultures expressed low levels of versican and decorin mRNAs; however, peak levels of biglycan mRNA were 400- and 16,000-fold that of versican and decorin, respectively. Biglycan mRNA was highest at 3 hr, declined steadily through day 7 and, at 12 hr and beyond, was significantly lower in tubulogenic cultures than in controls. Western blots of extracellular matrix from tubulogenic cultures contained bands corresponding to biglycan and its cleavage products. By immunocytochemistry, biglycan was found in the pericellular matrix surrounding endothelial tubes and in cell-associated puncta that co-localized with ADAMTS-4 and cortactin. Collectively, our results suggest that ADAMTS-4 and its substrate biglycan are involved in tubulogenesis by endothelial cells.  相似文献   

13.
Wharton's jelly (WJ) is a myxomatous substance surrounding the blood vessels of the umbilical cord. Proteoglycans (PGs) of Wharton's jelly have not been studied to date therefore it was decided to explore proteoglycan composition of this tissue. Proteoglycans were subjected to dissociative extraction with 4M guanidine hydrochloride containing Triton X-100 and protease inhibitors, purified by Q-Sepharose anion-exchange chromatography and lyophilised. They were analysed by gel filtration and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) before and after treatment with chondroitinase ABC. It was found that 1g of Wharton's jelly contains 2.43+/-0.63mg (n=10) of sulphated glycosaminoglycans (GAGs), reflecting the presence of proteoglycans. The proteoglycans were mainly substituted with chondroitin/dermatan sulphate (DS) chains. The predominant proteoglycan fraction included small proteoglycans with core proteins of 45 and 47kD, immunologically related to decorin (45 and 47kD) and biglycan (45kD). The expression of decorin core proteins was much higher than that of biglycan. Larger proteoglycans (core proteins of 90, 110, 220 and 260kD) were found in lower amounts. The most abundant of them (core protein of 260kD) was immunologically related to versican. Perlecan was not identified in Wharton's jelly. The study shows that Wharton's jelly contains mainly small chondroitin/dermatan sulphate proteoglycans, with decorin strongly predominating over biglycan. We suggest that an intensive expression of decorin is associated with very high content of its ligand, collagen.  相似文献   

14.
Studies have been initiated to identify various cell surface and matrix components of normal human skin through the production and characterization of murine monoclonal antibodies. One such antibody, termed PG-4, identifies both cell surface and matrix antigens in extracts of human foetal and adult skin as the dermatan sulfate proteoglycans, decorin and biglycan, and the chondroitin sulfate proteoglycan versican. Treatment of proteoglycans with chondroitinases completely abolishes immunoreactivity for all of these antigens which suggests that the epitope resides within their glycosaminoglycan chains. Further evidence for the carbohydrate nature of the epitope derives from competition studies where protein-free chondroitin sulfate chains from shark cartilage react strongly; however, chondroitin sulfate chains from bovine tracheal cartilage fail to exhibit a significant reactivity, an indication that the epitope, although present in some chondroitin sulfate chains, does not consist of random chondroitin 4- or 6-sulfate disaccharides. The presence of the epitope on dermatan sulfate chains and on decorin was also demonstrated using competition assays. Thus, PG-4 belongs to a class of antibodies that recognize native epitopes located within glycosaminoglycan chains. It differs from previously described antibodies in this class in that it identifies both chondroitin sulfate and dermatan sulfate proteoglycans. These characteristics make PG-4 a useful monoclonal antibody probe to identify the total population of proteoglycans in human skin.  相似文献   

15.
16.
The metabolism of the chondroitin/dermatan sulfate (CS/DS) proteoglycans (PGs) decorin and biglycan is markedly altered during short-term (3-6 weeks) and long-term (40 weeks-2 years) repair of surgically ruptured medial collateral ligaments from mature rabbits. A PG-rich extracellular matrix accumulates in injury gaps by 3 weeks postsurgery and extends into tissue regions containing the original ligaments, and elevated PG levels remain apparent up to 2 years postinjury. CS/DS PGs were prepared from such ligaments and identified after SDS-polyacrylamide gel electrophoresis by Alcian blue staining or immunoblotting. In normal ligaments, decorin is the most abundant proteoglycan (accounting for approximately 80% of the total); the remainder is biglycan and a large PG, possibly versican. In repairing ligaments, decorin is barely detected, but instead a large proteoglycan and abundant amounts of biglycan accumulate. Biglycan is present in two forms in repairing ligaments, and they can be separated on SDS-PAGE into 200- and 140-kDa forms. The slower migrating species is absent in normal ligaments and may represent a different glycoform (containing either a single or two short chondroitin/dermatan sulfate chains) of biglycan. Alteration in PG expression and posttranslational processing during medial collateral ligament repair are similar to those reported for repair and scar formation of other connective tissues. The accumulation of biglycan observed here may interfere with proper collagen network remodeling and may lead to persistent inflammatory and matrix turnover processes, thus preventing restoration of a long-term functional ligament tissue.  相似文献   

17.
The family of small interstitial chondroitin/dermatan sulfate proteoglycans consists of at least three different molecular species: biglycan (proteoglycan I), decorin (proteoglycan II), and proteoglycan-100, which has a glycosylated core protein of about 100 kDa. The core protein of decorin has been shown to be responsible for receptor-mediated endocytosis of this proteoglycan species by a variety of mesenchymal cells. It is now demonstrated that skin fibroblasts and articular chondrocytes endocytose biglycan with an efficiency similar to that of decorin. Uptake of biglycan is also mediated by its core protein and can be inhibited by decorin in a partially competitive manner. In human fibroblasts, endosomal proteins of 51 and 26 kDa, which are known to bind decorin core protein, also interact with biglycan. This interaction can be inhibited by decorin. Bovine articular chondrocytes contained binding proteins of 48 and 25 kDa. Proteoglycan-100 can be distinguished from biglycan and decorin by its low clearance rate, which however, exceeds the rate of fluid phase endocytosis.  相似文献   

18.
WISP-1 binds to decorin and biglycan   总被引:6,自引:0,他引:6  
Wnt-1-induced secreted protein 1 (WISP-1) is a member of the CCN (connective tissue growth factor, Cyr61, NOV) family of growth factors. Structural and experimental evidence suggests that CCN family member activities are modulated by their interaction with sulfated glycoconjugates. To elucidate the mechanism of action for WISP-1, we characterized the specificity of its tissue and cellular interaction and identified binding factors. WISP-1 binding was restricted to the stroma of colon tumors and to cells with a fibroblastic phenotype. By using a solid phase assay, we showed that human skin fibroblast conditioned media contained WISP-1 binding factors. Competitive inhibition with different glycosaminoglycans and treatment with glycosaminoglycan lyases and proteases demonstrated that binding to the conditioned media was mediated by dermatan sulfate proteoglycans. Mass spectrometric analysis identified the isolated binding factors as decorin and biglycan. Decorin and biglycan interacted directly with WISP-1 and inhibited its binding to components in the conditioned media. Similarly, WISP-1 interaction with human skin fibroblasts was inhibited by dermatan sulfate, decorin, and biglycan or by treatment of the cell surface with dermatan sulfate-specific lyases. Together these results demonstrate that decorin and biglycan are WISP-1 binding factors that can mediate and modulate its interaction with the surface of fibroblasts. We propose that this specific interaction plays a role in the regulation of WISP-1 function.  相似文献   

19.
20.
Chondroitin sulfates are linear sulfated polysaccharides called glycosaminoglycans. They are important nutraceutical and pharmaceutical products that are biosynthesized through the action of chondroitin sulfotransferases on either an unsulfated chondroitin or a dermatan polysaccharide precursor. While the enzymes involved in the biosynthesis of chondroitin sulfates are well known, the cloning end expression of these membrane-bound Golgi enzymes continue to pose challenges. The major chondroitin-4-sulfotransferase, Homo sapiens C4ST-1, had been previously cloned and expressed from mammalian CHO, COS-7, and HEK 293 cells, and its activity was shown to require glycosylation. In the current study, a C4ST-1 construct was designed and expressed in both Escherichia coli and Pichia pastoris in its non-glycosylated and glycosylated forms. Both constructs showed similar activity albeit different kinetic parameters when acting on a microbially prepared unsulfated chondroitin substrate. Moreover, the glycosylated form of C4ST-1 showed lower stability than the non-glycosylated form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号