首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preclinical and clinical trials of stem cell therapy have been carried out for treating a broad spectrum of diseases using several types of adult stem cells. While encouraging therapeutic results have been obtained, much remains to be investigated regarding the best cell type to use, cell dosage, delivery route, long-term safety, clinical feasibility, and ultimately treatment cost. Logistic aspects of stem cell therapeutics remain an area that requires urgent attention from the medical community. Recent cardiovascular trial studies have demonstrated that growth factors and cytokines derived from the injected stem cells and host tissue appear to contribute largely to the observed therapeutic benefits, indicating that trophic actions rather than the multilineage potential (or stemness) of the administered stem cells may provide the underlying tissue healing power. However, the capacity for trophic factor production can be aberrantly downregulated as seen in human heart disease. Skeletal muscle is a dynamic tissue with an impressive ability to continuously respond to environmental stimuli. Indeed, a relation exists between active skeletal muscle and low cardiovascular risk, highlighting the critical link between the skeletal muscle and cardiovascular systems. Adding to this notion are recent studies showing that stem cells injected into skeletal muscle can rescue the failing rodent heart through activation of the muscle trophic factor network and mobilization of bone marrow multilineage progenitor cells. However, aging and disease can adversely affect the host tissue into which stem cells are injected. A better understanding of the host tissue response in stem cell therapy is necessary to advance the field and bridge the gap between preclinical and clinical findings.  相似文献   

2.
Neurodegenerative diseases are devastating mental illnesses without a cure. Alzheimer's disease (AD) characterized by memory loss, multiple cognitive impairments, and changes in personality and behavior. Although tremendous progress has made in understanding the basic biology in disease processes in AD and PD, we still do not have early detectable biomarkers for these diseases. Just in the United States alone, federal and nonfederal funding agencies have spent billions of dollars on clinical trials aimed at finding drugs, but we still do not have a drug or an agent that can slow the AD or PD disease process. One primary reason for this disappointing result may be that the clinical trials enroll patients with AD or PD at advances stages. Although many drugs and agents are tested preclinical and are promising, in human clinical trials, they are mostly ineffective in slowing disease progression. One therapy that has been promising is ‘stem cell therapy’ based on cell culture and pre-clinical studies. In the few clinical studies that have investigated therapies in clinical trials with AD and PD patients at stage I. The therapies, such as stem cell transplantation – appear to delay the symptoms in AD and PD. The purpose of this article is to describe clinical trials using 1) stem cell transplantation methods in AD and PD mouse models and 2) regenerative medicine in AD and PD mouse models, and 3) the current status of investigating preclinical stem cell transplantation in patients with AD and PD.  相似文献   

3.
The current review focuses on pathophysiology, animal models and molecular analysis of stroke and retinal ischemia, and the role of stem cells in recovery of these disease conditions. Research findings associated with ischemic stroke and retinal ischemia have been discussed, and efforts towards prevention and limiting the recurrence of ischemic diseases, as well as emerging treatment possibilities with endothelial progenitor cells (EPCs) in ischemic diseases, are presented. Although most neurological diseases are still not completely understood and reliable treatment is lacking, animal models provide a major step in validating novel therapies. Stem cell approaches constitute an emerging form of cell-based therapy to treat ischemic diseases since it is an attractive source for regenerative therapy in the ischemic diseases. In this review, we highlight the advantages and limitations of this approach with a focus on key observations from preclinical animal studies and clinical trials. Further research, especially on treatment with EPCs is warranted.  相似文献   

4.
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs.Since the inception of the field several decades ago,regenerative medicine therapies,namely stem cells,have received significant attention in preclinical studies and clinical trials.Apart from their known potential for differentiation into the various body cells,stem cells enhance the organ's intrinsic regenerative capacity by altering its environment,whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration.Recently,research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells(CSCs/CPCs).The global burden of cardiovascular diseases’morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy.This review will discuss the nature of each of the CSCs/CPCs,their environment,their interplay with other cells,and their metabolism.In addition,important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells.Moreover,the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration.Finally,the novel role of nanotechnology in cardiac regeneration will be explored.  相似文献   

5.
New discoveries in stem cell biology are making the biology of solid tissues increasingly complex. Important seminal studies demonstrating the presence of damage-resistant cell populations together with new isolation and characterization techniques suggest that stem cells exist in the adult lung. More detailed in vivo molecular and cellular characterization of bronchioalveolar stem cells (BASCs), other putative lung stem and progenitor cells, and differentiated cells is needed to determine the lineage relationships in adult lung. Lung diseases such as cystic fibrosis or chronic obstructive pulmonary disease, as well as the most common form of lung cancer in the United States, all involve apparent bronchiolar and alveolar cell defects. It is likely that the delicate balance of stem, progenitor, and differentiated cell functions in the lung is critically affected in patients with these devastating diseases. Thus the discovery of BASCs and other putative lung stem cells will lay the foundation for new inroads to understanding lung biology related to lung disease.  相似文献   

6.
《Cytotherapy》2014,16(12):1614-1628
The severely preterm infant receives a multitude of life-saving interventions, many of which carry risks of serious side effects. Cell therapy is an important and promising arm of regenerative medicine that may address a number of these problems. Most forms of cellular therapy use stem/progenitor cells or stem-like cells, which have the capacity to migrate, engraft and exert anti-inflammatory effects. Although some of these cell-based therapies have made their way to clinical trials in adults, little headway has been made in the neonatal patient group. This review discusses the efficacy of cell therapy in preclinical studies to date and their potential applications to diseases that afflict many prematurely born infants. Specifically, we identify the major hurdles that must be overcome before cell therapies can be safely used in the neonatal intensive care unit.  相似文献   

7.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell–derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.  相似文献   

8.
During the last decade transplantation of cells into the heart has emerged as a novel therapy for the prevention and treatment of heart failure. Although various cell types have been used, most experience has been obtained with the progenitor cells of skeletal muscle, also called myoblasts, and a wide array of bone marrow-derived cell types. The first preclinical studies demonstrated an improvement in global and regional heart function that was attributed mainly to a direct contractile effect of the transplanted cells. Furthermore, it was suggested that multiple cell types are able to form true cardiomyocytes and truly ‘regenerate’ the myocardium. More recent studies have questioned these early findings. Other mechanisms such as paracrine effects on the infarct and remote myocardium, a reduction in adverse remodelling and improvement of mechanical properties of the infarct tissue likely play a more important role. On the basis of encouraging preclinical studies, multiple early-phase clinical trials and several randomised controlled trials have been conducted that have demonstrated the feasibility, safety and potential efficacy of this novel therapy in humans. This review summarises the available evidence on cardiac cell transplantation and provides an outlook on future preclinical and clinical research that has to fill in the remaining gaps. (Neth Heart J 2008; 16:88-95.)  相似文献   

9.
Somatic stem/progenitor cells are known to be present in most adult tissues. However, those in the lung have limited abilities for tissue regeneration after serious damage as a result of chronic disease. Therefore, regenerative medicine using exogenous stem cells has been suggested for the treatment of progressive lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis. Embryonic stem (ES) cells and induced pluripotent stem cells, with their potent differentiation abilities, are promising sources for the generation of various tissue cells. In this study, we investigated the effects of various differentiation-inducing growth factors on the differentiation of lung cells from ES cells in vitro. Several factors, including activin, nodal, and noggin, significantly promoted the induction of Nkx2.1-positive lung progenitor cells when cells were cultured as embryoid bodies. Bone morphogenetic protein (BMP) 4 signaling controls the lineage commitment of lung cells along the proximal–distal axis. BMP4 promotes the induction of distal cell lineages of alveolar bud, such as Clara cells and mucus-producing goblet cells. These results suggest that several developmentally essential factors, including nodal/activin and BMP signaling, are important in the control of the differentiation of lung epithelial cells from mouse ES cells in vitro.  相似文献   

10.
Retinal and optic nerve diseases are degenerative ocular pathologies which lead to irreversible visual loss. Since the advanced therapies availability, cell-based therapies offer a new all-encompassing approach. Advances in the knowledge of neuroprotection, immunomodulation and regenerative properties of mesenchymal stem cells(MSCs) have been obtained by several preclinical studies of various neurodegenerative diseases. It has provided the opportunity to perform the translation of this knowledge to prospective treatment approaches for clinical practice. Since 2008, several first steps projecting new treatment approaches, have been taken regarding the use of cell therapy in patients with neurodegenerative pathologies of optic nerve and retina. Most of the clinical trials using MSCs are in Ⅰ/Ⅱ phase, recruiting patients or ongoing, and they have as main objective the safety assessment of MSCs using various routes of administration. However, it is important to recognize that, there is still a long way to go to reach clinical trials phase Ⅲ-Ⅳ. Hence, it is necessary to continue preclinical and clinical studies to improve this new therapeutic tool. This paper reviews the latest progress of MSCs in human clinical trials for retinal and optic nerve diseases.  相似文献   

11.
Huntington's disease (HD) is a late‐onset neurodegenerative disease characterized by a progressive loss of medium spiny neurons in the basal ganglia. The development of stem cell‐based therapies for HD aims to replace lost neurons and/or to prevent cell death. This review will discuss pre‐clinical studies which have utilized stem or progenitor cells for transplantation therapy using HD animal models. In several studies, neural stem and progenitor cells used as allotransplants and xenografts have been shown to be capable of surviving transplantation and differentiating into mature GABAergic neurons, resulting in behavioral improvements. Beneficial effects have also been reported for transplantation of stem cells derived from non‐neural tissue, for example, mesenchymal‐ and adipose‐derived stem cells, which have mainly been attributed to their secretion of growth and neurotrophic factors. Finally, we review studies using stem cells genetically engineered to over‐express defined neurotrophic factors. While these studies prove the potential of stem cells for transplantation therapy in HD, it also becomes clear that technical and ethical issues regarding the availability of stem cells must be solved before human trials can be conducted. J. Cell. Biochem. 114: 754–763, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
《Cytokine》2014,70(2):277-283
Chemotactic factors direct the migration of immune cells, multipotent stem cells, and progenitor cells under physiologic and pathologic conditions. Chemokine ligand 12 and chemokine ligand 7 have been identified and investigated in multiple studies for their role in cellular trafficking in the setting of tissue regeneration. Recent early phase clinical trials have suggested that these molecules may lead to clinical benefit in patients with chronic disease. Importantly, these two proteins may play additional significant roles in directing the migration of multipotent cells, such as mesenchymal stem cells and hematopoietic progenitor cells. This article reviews the functions of these two chemokines, focusing on recruitment to sites of injury, immune function modulation, and contributions to embryonic development. Additional research would provide valuable insight into the potential clinical application of these two proteins in stem cell therapy.  相似文献   

13.
ObjectivesChronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage including chronic bronchitis and emphysema, which could further develop into respiratory failure. Many studies have revealed a potential regenerative function of the distal airway stem/progenitor cells (DASCs) after lung injury.Materials and MethodsMouse and human DASCs were expanded, analysed, and engrafted into injured mouse lungs. Single‐cell analyses were performed to reveal the differentiation path of the engrafted cells. Finally, human DASCs were transplanted into COPD mice induced by porcine pancreatic elastase (PPE) and lipopolysaccharide (LPS) administration.ResultsWe showed that isolated mouse and human DASCs could be indefinitely expanded and were able to further differentiate into mature alveolar structures in vitro. Single‐cell analysis indicated that the engrafted cells expressed typical cellular markers of type I alveolar cells as well as the specific secreted proteins. Interestingly, transplantation of human DASCs derived from COPD patients into the lungs of NOD‐SCID mice with COPD injury repaired the tissue damage and improved the pulmonary function.ConclusionsThe findings demonstrated that functional lung structure could be reconstituted by intrapulmonary transplantation of DASCs, suggesting a potential therapeutic role of DASCs transplantation in treatment for chronic obstructive pulmonary disease.  相似文献   

14.
Mesenchymal stem cells (MSCs) are progenitor cells capable of self-renewal that can differentiate in multiple tissues and, under specific and standardized culture conditions, expand in vitro with little phenotypic alterations. In recent years, preclinical and clinical studies have focused on MSC analysis and understanding the potential use of these cells as a therapy in a wide range of pathologies, and many applications have been tested. Clinical trials using MSCs have been performed (e.g., for cardiac events, stroke, multiple sclerosis, blood diseases, auto-immune disorders, ischemia, and articular cartilage and bone pathologies), and for many genetic diseases, these cells are considered an important resource. Considering of the biology of MSCs, these cells may also be useful tools for understanding the physiopathology of different diseases, and they can be used to develop specific biomarkers for a broad range of diseases. In this editorial, we discuss the literature related to the use of MSCs for diagnostic applications and we suggest new technologies to improve their employment.  相似文献   

15.
Mesenchymal stem cells and the treatment of cardiac disease   总被引:32,自引:0,他引:32  
The ischemia-induced death of cardiomyocytes results in scar formation and reduced contractility of the ventricle. Several preclinical and clinical studies have supported the notion that cell therapy may be used for cardiac regeneration. Most attempts for cardiomyoplasty have considered the bone marrow as the source of the "repair stem cell(s)," assuming that the hematopoietic stem cell can do the work. However, bone marrow is also the residence of other progenitor cells, including mesenchymal stem cells (MSCs). Since 1995 it has been known that under in vitro conditions, MSCs differentiate into cells exhibiting features of cardiomyocytes. This pioneer work was followed by many preclinical studies that revealed that ex vivo expanded, bone marrow-derived MSCs may represent another option for cardiac regeneration. In this work, we review evidence and new prospects that support the use of MSCs in cardiomyoplasty.  相似文献   

16.
A major challenge in cardiovascular regenerative medicine is the development of novel therapeutic strategies to restore the function of cardiac muscle in the failing heart. The heart has historically been regarded as a terminally differentiated organ that does not have the potential to regenerate. This concept has been updated by the discovery of cardiac stem and progenitor cells that reside in the adult mammalian heart. Whereas diverse types of adult cardiac stem or progenitor cells have been described, we still do not know whether these cells share a common origin. A better understanding of the physiology of cardiac stem and progenitor cells should advance the successful use of regenerative medicine as a viable therapy for heart disease. In this review, we summarize current knowledge of the various adult cardiac stem and progenitor cell types that have been discovered. We also review clinical trials presently being undertaken with adult stem cells to repair the injured myocardium in patients with coronary artery disease.  相似文献   

17.
王佳一  邹伟  刘晶 《生物工程学报》2020,36(10):1970-1978
当前新型冠状病毒肆虐,全球确诊患者超过3 500万例,累计死亡患者超过50万例,对于突发疫情,临床尚缺乏有效特异性治疗,新型冠状病毒已成为危害人类健康、社会发展的主要公共卫生问题。间充质干细胞具有抗炎和免疫调节功能,可降低重症患者体内由冠状病毒引发的细胞因子风暴,改善患者肺部纤维化,促进损伤肺组织修复,有望降低新冠肺炎的死亡率。目前已开展多项间充质干细胞治疗新型冠状病毒肺炎临床试验,初步证实了间充质干细胞应用在新冠肺炎方面的安全及有效性。在间充质干细胞治疗新冠肺炎取得进展的同期,还应看到该疗法独有特点及疫情严峻形势对临床试验开和及评价带来的问题与挑战,包括临床试验方案设计、干细胞质量管理以及治疗中的伦理考量。只有对其加以重视,才能保证在严峻疫情下安全有效地开展间充质干细胞治疗新型冠状病毒肺炎的临床试验。  相似文献   

18.
Cannon RO 《Cytotherapy》2004,6(6):602-607
Observational and experimental studies suggest that BM-derived stem and progenitor cells may have the capacity to repair damaged cardiovascular tissue and initiate blood vessel growth in regions of ischemia. Despite controversies regarding transdifferentiation potential of adult stem cells, clinical trials are underway testing the hypothesis that BM cell-based approaches to a broad spectrum of cardiovascular diseases and disease presentations will be safe and effective strategies for patient management.  相似文献   

19.
Stem and progenitor cell-based therapy of the human central nervous system   总被引:30,自引:0,他引:30  
Multipotent neural stem cells, capable of giving rise to both neurons and glia, line the cerebral ventricles of all adult animals, including humans. In addition, distinct populations of nominally glial progenitor cells, which also have the capacity to generate several cell types, are dispersed throughout the subcortical white matter and cortex. A number of approaches have evolved for using neural progenitor cells in cell therapy. Four strategies are especially attractive for clinical translation: first, transplantation of oligodendrocyte progenitor cells as a means of treating the disorders of myelin; second, transplantation of phenotypically restricted neuronal progenitor cells to treat diseases of discrete loss of a single neuronal phenotype, such as Parkinson disease; third, implantation of mixed progenitor pools to treat diseases characterized by the loss of several discrete phenotypes, such as spinal cord injury; and fourth, mobilization of endogenous neural progenitor cells to restore neurons lost as a result of neurodegenerative diseases, in particular Huntington disease. Together, these may present the most compelling strategies and near-term disease targets for cell-based neurological therapy.  相似文献   

20.
全球终末期肝病、肝衰竭的发病率和死亡率逐年升高,且目前肝移植是唯一疗效确切的治疗选择,但是,肝移植的使用受到肝源供体严重不足,长期存活率低,医疗费用昂贵等缺点使得原位肝移植的应用受限,绝大多数患者无法受益。为了克服肝脏器官短缺,干细胞替代治疗策略逐渐成为另一个肝病治疗的重要选择,干细胞治疗,特别是间充质干细胞(MSC)提供了一个新的肝病治疗选择。MSC是一群贴壁生长的成纤维细胞样细胞,由于MSC能够分化为多种类型的细胞,能够产生多种的细胞因子和生长因子,具有造血支持和免疫调节和抗炎功能,MSC被认为在再生医学领域具有重大的科学和实用价值。另外,由于MSC应用于治疗实验性肝损伤能明显提高动物存活率,明显改善肝功能。此外,一些临床前研究和临床研究也表明MSC对肝损伤性疾病具有显著地疗效。因此MSC在损伤性和退行性肝脏疾病的治疗具有广阔的应用前景。本文综述了MSC在肝损伤疾病治疗应用的进展,并对MSC在肝病治疗中的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号