首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell therapy plays an important role in multidisciplinary management of the two major forms of central nervous system (CNS) injury, traumatic brain injury and spinal cord injury, which are caused by external physical trauma. Cell therapy for CNS disorders involves the use of cells of neural or non-neural origin to replace, repair, or enhance the function of the damaged nervous system and is usually achieved by transplantation of the cells, which are isolated and may be modified, e.g., by genetic engineering, when it may be referred to as gene therapy. Because the adult brain cells have a limited capacity to migrate to and regenerate at sites of injury, the use of embryonic stem cells that can be differentiated into various cell types as well as the use of neural stem cells has been explored. Preclinical studies and clinical trials are reviewed. Advantages as well as limitations are discussed. Cell therapy is promising for the treatment of CNS injury because it targets multiple mechanisms in a sustained manner. It can provide repair and regeneration of damaged tissues as well as prolonged release of neuroprotective and other therapeutic substances.  相似文献   

2.
Over the last decades medicine has developed tremendously, but still many diseases are incurable. The last years, cellular (gene) therapy has become a hot topic in biomedical research for the potential treatment of cancer, AIDS and diseases involving cell loss or degeneration. Here, we will focus on two major areas within cellular therapy, cellular immunotherapy and stem cell therapy, that could benefit from the introduction of neo-expressed genes through mRNA electroporation for basic research as well as for clinical applications. For cellular immunotherapy, we will provide a state-of-the-art on loading antigen-presenting cells with antigens in the mRNA format for manipulation of T cell immunity. In the area of stem cell research, we will highlight current gene transfer methods into adult and embryonic stem cells and discuss the use of mRNA electroporation for controlling guided differentiation of stem cells into specialized cell lineages.  相似文献   

3.
诱导多能干细胞(i PS细胞)在小鼠和人上的成功获取,使干细胞领域的研究进入了一个崭新的时代。干细胞研究是再生医学的重要组成部分,研究干细胞的最终目的是应用干细胞治疗疾病,其在疾病模型建立、药物筛选、细胞移植等方面具有极大的应用潜力。i PSCs是由体细胞诱导分化而成的"多能细胞",具备和胚胎干细胞类似的功能,既解决了ESCs的伦理障碍,又为ESCs的获得提供了一条全新的途径,具有重要的理论和应用价值。i PS细胞不仅打破了道德理论的束缚,而且在再生医学、组织工程和药物发现及评价等方面具有积极的价值。神经系统遗传性疾病发病率居各系统遗传病之首,但其发病的分子机制仍不完全清楚,运用体细胞重编程技术建立的疾病特异性诱导多能干细胞模型将有助于揭示神经系统遗传性疾病的发病机理。近几年i PS细胞最新研究成果表明,利用疾病患者i PS细胞模型已逐渐应用于帕金森氏病、老年性痴呆症、脊髓侧索硬化症、脊髓肌肉萎缩症及舞蹈症等5种常见神经性退行性疾病发病机理的研究。本文主要对i PSc的发展历程,避免病毒基因干扰诱导i PS细胞进行的优化,以及干细胞尤其是i PS细胞移植治疗帕金森病等神经系统疾病的现状及应用前景进行系统阐述与论证。  相似文献   

4.
干细胞研究已成为当今生命科学领域中的前沿和热点问题,该研究为探讨胚胎发生、组织细胞分化以及基因表达调控等生物学问题提供了理想的模型,同时也为临床组织缺陷性疾病和遗传性疾病的细胞治疗和基因治疗开辟了新的手段。其中,经血源性子宫内膜干细胞(Menstrual blood-derived stem cells,MenSCs)来源丰富,具有多向分化潜能和较低的免疫排斥的特性,可以实现个体化治疗,是临床最具有应用优势的干细胞。脑与脊髓作为中枢神经系统,其损伤极为常见,致死率和致残率居各类创伤之首。与周围神经系统损伤相比,中枢神经受损后恢复较为困难,其治疗仍缺乏突破。而MenSCs的治疗有希望解决此难题,故结合近年来国内外对MenSCs的生物学特性及其对中枢神经系统疾病治疗的研究作一综述,从而为中枢神经系统疾病的治疗提供参考。  相似文献   

5.
心血管疾病是威胁人类健康的重大疾病,而心肌细胞数量逐渐减少,甚至衰竭是其核心病变。心肌细胞补偿性替代治疗是未来用于治疗这类疾病的重要手段,因此,心肌细胞的来源和有效治疗将成为关键。目前,心肌细胞构建的主要方法有多能干细胞诱导分化成心肌祖细胞或心肌细胞、心源性心肌祖细胞,以及体细胞重编程等。其中,多能干细胞向心肌细胞分化是最常用的方法;而体细胞转分化技术相较于传统的诱导多潜能干细胞衍生心肌细胞缩短了时间窗,为潜在的心血管疾病治疗提供了另一种思路。随着获取心肌细胞效率及其质量的提升,未来心血管疾病的治疗将有望获得重大突破。  相似文献   

6.
Gene delivery to adult neural stem cells   总被引:15,自引:0,他引:15  
Neural stem cells may present an ideal route for gene therapy as well as offer new possibilities for the replacement of neurons lost to injury or disease. However, it has proved difficult to express ectopic genes in stem cells. We report methods to introduce genes into adult neural stem cells using viral and nonviral vectors in vitro and in vivo. Adenoviral and VSV-G-pseudotyped retroviral vectors are more efficient than plasmid transfection or VSV-G lentiviral transduction in vitro. We further show that adult neural stem cells can be directed to a neuronal fate by ectopic expression of neurogenin 2 in vitro. Plasmids can be delivered in vivo when complexed with linear polyethyleneimine, and gene expression can be targeted specifically to neural stem or progenitor cells by the use of specific promoters. These techniques may be utilized both to study the function of various genes in the differentiation of neural stem cells to specific cell fates and, ultimately, for gene therapy or to generate specific differentiated progeny for cell transplantation.  相似文献   

7.
Spinal cord injury is a devastating, traumatic event, and experienced mainly among young people. Until the modern era, spinal cord injury was so rapidly fatal that no seriously injured persons would survive long enough for regeneration to occur. Treatment of spinal cord injury can be summarized as follows: prevent further cord injury, maintain blood flow, relieve spinal cord compression, and provide secure vertebral stabilization so as to allow mobilization and rehabilitation, none of which achieves functional recovery. Previous studies have focused on analyzing the pathogenesis of secondary injury that extends from the injury epicenter to the periphery, as well as the tissue damage and neural cell death associated with secondary injury. Now, there are hundreds of current experimental and clinical regenerative treatment studies. One of the most popular treatment method is cell transplantation in injured spinal cord. For this purpose bone marrow stromal cells, mononuclear stem cells, mesenchymal stem cells, embryonic stem cells, neural stem cells, and olfactory ensheathing cells can be used. As a result, cell transplantation has become a promising therapeutic option for spinal cord injury patients. In this paper we discuss the effectiveness of stem cell therapy in spinal cord injury.  相似文献   

8.
Cardiovascular diseases are known as one of major causes of morbidity and mortality worldwide. Despite the many advancement in therapies are associated with cardiovascular diseases, it seems that finding of new therapeutic option is necessary. Cell therapy is one of attractive therapeutic platforms for treatment of a variety of diseases such as cardiovascular diseases. Among of various types of cell therapy, stem cell therapy has been emerged as an effective therapeutic approach in this area. Stem cells divided into multipotent stem cells and pluripotent stem cells. A large number studies indicated that utilization of each of them are associated with a variety of advantages and disadvantages. Multiple lines evidence indicated that stem cell therapy could be used as suitable therapeutic approach for treatment of cardiovascular diseases. Many clinical trials have been performed for assessing efficiency of stem cell therapies in human. However, stem cell therapy are associated with some challenges, but, it seems resolving of them could contribute to using of them as effective therapeutic approach for patients who suffering from cardiovascular diseases. In the current review, we summarized current therapeutic strategies based on stem cells for cardiovascular diseases. J. Cell. Biochem. 119: 95–104, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

9.
The current review focuses on pathophysiology, animal models and molecular analysis of stroke and retinal ischemia, and the role of stem cells in recovery of these disease conditions. Research findings associated with ischemic stroke and retinal ischemia have been discussed, and efforts towards prevention and limiting the recurrence of ischemic diseases, as well as emerging treatment possibilities with endothelial progenitor cells (EPCs) in ischemic diseases, are presented. Although most neurological diseases are still not completely understood and reliable treatment is lacking, animal models provide a major step in validating novel therapies. Stem cell approaches constitute an emerging form of cell-based therapy to treat ischemic diseases since it is an attractive source for regenerative therapy in the ischemic diseases. In this review, we highlight the advantages and limitations of this approach with a focus on key observations from preclinical animal studies and clinical trials. Further research, especially on treatment with EPCs is warranted.  相似文献   

10.
Gene therapy is an active research area in The Netherlands and Dutch scientists involved in fundamental and clinical gene therapy research significantly contribute to the progresses made in this field. This ranges from the establishment of the 293, 911 and PER.C6 cell lines, which are used worldwide for the production of replication-defective adenoviral vectors, to the development of targeted viral vectors and T lymphocytes as well as of non-viral vectors. Several milestones have been achieved in Dutch clinical gene therapy trials, including the first treatment worldwide of patients with adenosine deaminase deficiency with genetically corrected hematopoietic stem cells in collaboration with French and British scientists. Until now, about 230 patients with various diseases have been treated with viral and non-viral gene therapy in this country. Ongoing and upcoming Dutch clinical trials focus on the translation of new developments in gene therapy research, including the restoration of genetic defects other than SCID, and the use of oncolytic adenoviruses and targeted T cells for the treatment of cancer. The growing commercial interest in Dutch clinical gene therapy is reflected by the involvement of two Dutch companies in ongoing trials as well as the participation of Dutch clinical centres in large phase III international multicenter immuno-gene therapy trials on prostate cancer sponsored by an American company. Translational gene therapy research in The Netherlands is boosted at a governmental level by the Dutch Ministry of Health via a dedicated funding programme. This paper presents an overview on milestones in Dutch basic gene therapy research as well as on past, present and future clinical gene therapy trials in The Netherlands.  相似文献   

11.
Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm−1 μm) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer’s disease and Parkinson’ disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.  相似文献   

12.
Nonhematopoietic stem cells as a delivery platform of therapeutic useful genes have attracted widespread attention in recent years, owing to gained a long lifespan, easy separation, high proliferation, and high transfection capacity. Mesenchymal stem/stromal cells (MSCs) are the choice of the cells for gene and cell therapy due to high self-renewal capacity, high migration rate to the site of the tumor, and with immune suppressive and anti-inflammatory properties. Hence, it has a high potential of safety genetic modification of MSCs for antitumor gene expression and has paved the way for the clinical application of these cells to target the therapy of cancers and other diseases. The aim of gene therapy is targeted treatment of cancers and diseases through recovery, change, or enhancement cell performance to the sustained secretion of useful therapeutic proteins and induction expression of the functional gene in intended tissue. Recent developments in the vectors designing leading to the increase and durability of expression and improvement of the safety of the vectors that overcome a lot of problems, such as durability of expression and the host immune response. Nowadays, gene therapy approach is used by MSCs as a delivery vehicle in the preclinical and the clinical trials for the secretion of erythropoietin, recombinant antibodies, coagulation factors, cytokines, as well as angiogenic inhibitors in many blood disorders like anemia, hemophilia, and malignancies. In this study, we critically discuss the status of gene therapy by MSCs as a delivery vehicle for the treatment of blood disorders. Finally, the results of clinical trial studies are assessed, highlighting promising advantages of this emerging technology in the clinical setting.  相似文献   

13.
Selegiline, the irreversible inhibitor of monoamine oxidase B (MAO-B), is currently used to treat Parkinson’s disease. However, the mechanism of action of selegiline is complex and cannot be explained solely by its MAO-B inhibitory action. It stimulates gene expression, as well as expression of a number of mRNAs or proteins in nerve and glial cells. Direct neuroprotective and anti-apoptotic actions of selegiline have previously been observed in vitro. Previous studies showed that selegiline can induce neuronal phenotype in cultured bone marrow stem cells and embryonic stem cells. Embryonal carcinoma (EC) cells are developmentaly pluripotene cells which can be differentiated into all cell types under the appropriate conditions. The present study was carried out to examine the effects of selegiline on undifferentiated P19 EC cells. The results showed that selegiline treatment had a dramatic effect on neuronal morphology. It induced the differentiation of EC cells into neuron-like cells in a concentration-dependent manner. The peak response was in a dose of selegiline significantly lower than required for MAO-B inhibition. The differentiated cells were immunoreactive for neuron-specific proteins, synaptophysin, and β-III tubulin. Stem cell therapy has been considered as an ideal option for the treatment of neurodegenerative diseases. Generation of neurons from stem cells could serve as a source for potential cell therapy. This study suggests the potential use of combined selegiline and stem cell therapy to improve deficits in neurodegenerative diseases.  相似文献   

14.
Liver diseases caused by viral infection, alcohol abuse and metabolic disorders can progress to end‐stage liver failure, liver cirrhosis and liver cancer, which are a growing cause of death worldwide. Although liver transplantation and hepatocyte transplantation are useful strategies to promote liver regeneration, they are limited by scarce sources of organs and hepatocytes. Mesenchymal stem cells (MSCs) restore liver injury after hepatogenic differentiation and exert immunomodulatory, anti‐inflammatory, antifibrotic, antioxidative stress and antiapoptotic effects on liver cells in vivo. After isolation and culture in vitro, MSCs are faced with nutrient and oxygen deprivation, and external growth factors maintain MSC capacities for further applications. In addition, MSCs are placed in a harsh microenvironment, and anoikis and inflammation after transplantation in vivo significantly decrease their regenerative capacity. Pre‐treatment with chemical agents, hypoxia, an inflammatory microenvironment and gene modification can protect MSCs against injury, and pre‐treated MSCs show improved hepatogenic differentiation, homing capacity, survival and paracrine effects in vitro and in vivo in regard to attenuating liver injury. In this review, we mainly focus on pre‐treatments and the underlying mechanisms for improving the therapeutic effects of MSCs in various liver diseases. Thus, we provide evidence for the development of MSC‐based cell therapy to prevent acute or chronic liver injury. Mesenchymal stem cells have potential as a therapeutic to prolong the survival of patients with end‐stage liver diseases in the near future.  相似文献   

15.
在基因治疗中,造血干细胞因为具有自我更新及分化为各种血细胞系的能力而成为一种很有吸引力的靶细胞。将外源目的基因导入造血干细胞,以纠正或补偿因基因缺陷和异常引起的疾病,特别是血液疾病已取得重要进展,例如:腺苷脱氨酶缺陷病、血友病、地中海贫血症及镰状细胞性贫血症等。而慢病毒以其转染效率高,能够感染非分裂期细胞的特点成为转染造血干细胞的最适合载体,本文就造血干细胞的特性、载体的选择及临床应用和基因治疗的安全性等方面作一综述。  相似文献   

16.
Cell therapy is one of the important therapeutic approaches in the treatment of many diseases such as cancer, degenerative diseases, and cardiovascular diseases. Among various cell types, which could be used as cell therapies, stem cell therapy has emerged as powerful tools in the treatment of several diseases. Multipotent stem cells are one of the main classes of stem cells that could originate from different parts of the body such as bone marrow, adipose, placenta, and tooth. Among several types of multipotent stem cells, tooth-derived stem cells (TDSCs) are associated with special properties such as accessible, easy isolation, and low invasive, which have introduced them as a good source for using in the treatment of several diseases such as neural injuries, liver fibrosis, and Cohrn’s disease. Here, we provided an overview of TDSCs particular stem cells from human exfoliated deciduous teeth and clinical application of them. Moreover, we highlighted molecular mechanisms involved in the regulation of dental stem cells fate.  相似文献   

17.
Cell therapy has the potential to improve healing of ischemic heart, repopulate injured myocardium and restore cardiac function. The tremendous hope and potential of stem cell therapy is well understood, yet recent trials involving cell therapy for cardiovascular diseases have yielded mixed results with inconsistent data thereby readdressing controversies and unresolved questions regarding stem cell efficacy for ischemic cardiac disease treatment. These controversies are believed to arise by the lack of uniformity of the clinical trial methodologies, uncertainty regarding the underlying reparative mechanisms of stem cells, questions concerning the most appropriate cell population to use, the proper delivery method and timing in relation to the moment of infarction, as well as the poor stem cell survival and engraftment especially in a diseased microenvironment which is collectively acknowledged as a major hindrance to any form of cell therapy. Indeed, the microenvironment of the failing heart exhibits pathological hypoxic, oxidative and inflammatory stressors impairing the survival of transplanted cells. Therefore, in order to observe any significant therapeutic benefit there is a need to increase resilience of stem cells to death in the transplant microenvironment while preserving or better yet improving their reparative functionality. Although stem cell differentiation into cardiomyocytes has been observed in some instance, the prevailing reparative benefits are afforded through paracrine mechanisms that promote angiogenesis, cell survival, transdifferentiate host cells and modulate immune responses. Therefore, to maximize their reparative functionality, ex vivo manipulation of stem cells through physical, genetic and pharmacological means have shown promise to enable cells to thrive in the postischemic transplant microenvironment. In the present work, we will overview the current status of stem cell therapy for ischemic heart disease, discuss the most recurring cell populations employed, the mechanisms by which stem cells deliver a therapeutic benefit andstrategies that have been used to optimize and increase survival and functionality of stem cells including ex vivo preconditioning with drugs and a novel "pharmacooptimizer" as well as genetic modifications.  相似文献   

18.
脂肪干细胞(adipose-derived stem cells,ADSCs)是一类从脂肪分离出来的具有自我更新及多向分化潜能的成体干细胞,ADSCs具有高度的可塑性,可分化成多种类型的细胞。与其他干细胞相比,ADSCs具有来源充足,取材方便,供体易接受等独特优势,已成为基础医学及临床治疗的研究热点。ADSCs诱导分化和移植可有效治疗多种组织损伤性疾病,改善或修复器官功能,近年来ADSCs作为细胞疗法及组织工程的新型种子细胞在泌尿系统疾病治疗中取得了重大进展。本文重点讨论ADSCs的生物学特性及其在泌尿系统疾病中的应用前景。  相似文献   

19.
K Ozawa 《Human cell》1991,4(1):13-17
Gene therapy, which is treatment of diseases by introducing normal genes into the body, is becoming feasible as the result of advances in genetic engineering. The hematopoietic stem cells have been considered as the appropriate target for gene transfer in many genetic diseases for which allogeneic bone marrow transplantation has been employed successfully. However, there are still many problems to be solved. In particular, expression from retrovirally transduced genes in bone marrow cells has been transient and unstable. On the other hand, an alternative approach to somatic cell gene therapy using nonhematopoietic cells, including skin fibroblasts, endothelial cells, keratinocytes, and lymphocytes, has been shown to possess several advantages. This kind of approach is usually applied to supplementation therapy in not only hereditary disorders but also various acquired diseases, such as cancer or infectious diseases. Recently, clinical application of gene transfer into lymphocytes to treat cancer and immunodeficiency have been approved at NIH (USA). The trial could represent the start of a new era in molecular medicine.  相似文献   

20.
Of the various gene therapy approaches under investigation for the treatment of genetic diseases, hematopoietic stem cell-mediated gene therapy has attracted the most interest. Enriched populations of hematopoietic stem cells can be obtained from diseased individuals, genetically modified to express normal gene products, and then transplanted back into these individuals without the risk of graft versus host disease. Following transplantation and engraftment, hematopoietically-derived cells can repopulate various sites of pathology and express the normal gene product in vivo. Such a procedure has been accomplished in several mouse models of human genetics diseases, leading to partial or complete correction of the disease phenotype, and current efforts are now focused on adapting the success of murine systems to larger animals, including man. This review will focus on the use of hematopoietic stem cell-mediated gene therapy for the treatment of lysosomal storage disorders, and discuss recent data obtained in the laboratory using a murine knock-out mouse model of Types A and B Niemann-Pick disease (NPD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号