共查询到20条相似文献,搜索用时 0 毫秒
1.
Geeta Shroff 《World journal of stem cells》2016,8(7):223-230
AIM:To evaluate the safety and efficacy of human embryonic stem cells(h ESCs)for the management of type 2 diabetes mellitus(T2DM).METHODS:Patients with a previous history of diabetes and its associated complications were enrolled and injected with hE SC lines as per the defined protocol.The patients were assessed using Nutech functional score(NFS),a numeric scoring scale to evaluate the patients for 11 diagnostic parameters.Patients were evaluated at baseline and at the end of treatment period 1(T1).All the parameters were graded on the NFS scale from 1to 5.Highest possible grade(HPG)of 5 was considered as the grade of best improvement.RESULTS:Overall,94.8%of the patients showed improvement by at least one grade of NFS at the end of T1.For all the 11 parameters evaluated,54%of patients achieved HPG after treatment.The four essential parameters(improvement in glycated hemoglobin(HbA 1c)and insulin level,and fall in number of other oral hypoglycemic drugs with and without insulin)are presented in detail.For Hb A1c,72.6%of patients at the end of T1 met the World Health Organization cut off value,i.e.,6.5%of HbA 1c.For insulin level,65.9%of patients at the end of T1 were able to achieve HPG.After treatment,the improvement was seen in 16.3%of patients who required no more than two medications along with insulin.Similarly,21.5%of patients were improved as their dosage regimen for using oral drugs was reduced to 1-2 from 5.CONCLUSION:hE SC therapy is beneficial in patients with diabetes and helps in reducing their dependence on insulin and other medicines. 相似文献
2.
Ilvy M.E. Geraets Dipanjan Chanda Florence H.J. van Tienen Arthur van den Wijngaard Rick Kamps Dietbert Neumann Yilin Liu Jan F.C. Glatz Joost J.F.P. Luiken Miranda Nabben 《生物化学与生物物理学报:疾病的分子基础》2018,1864(5):1960-1967
Patients with type 2 diabetes (T2D) and/or insulin resistance (IR) have an increased risk for the development of heart failure (HF). Evidence indicates that this increased risk is linked to an altered cardiac substrate preference of the insulin resistant heart, which shifts from a balanced utilization of glucose and long-chain fatty acids (FAs) towards an almost complete reliance on FAs as main fuel source. This shift leads to a loss of endosomal proton pump activity and increased cardiac fat accumulation, which eventually triggers cardiac dysfunction. In this review, we describe the advantages and disadvantages of currently used in vitro models to study the underlying mechanism of IR-induced HF and provide insight into a human in vitro model: human embryonic stem cell-derived cardiomyocytes (hESC-CMs). Using functional metabolic assays we demonstrate that, similar to rodent studies, hESC-CMs subjected to 16 h of high palmitate (HP) treatment develop the main features of IR, i.e., decreased insulin-stimulated glucose and FA uptake, as well as loss of endosomal acidification and insulin signaling. Taken together, these data propose that HP-treated hESC-CMs are a promising in vitro model of lipid overload-induced IR for further research into the underlying mechanism of cardiac IR and for identifying new pharmacological agents and therapeutic strategies. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers. 相似文献
3.
目的寻找可以维持人胚胎干细胞未分化生长的人源性细胞作为饲养层细胞,从而解决使用鼠源性细胞作为饲养层带来的安全问题。方法尝试以人脐带间充质干细胞作为饲养层细胞来培养人胚胎干细胞,检验其是否可以维持人胚胎干细胞的未分化生长状态。用胶原酶消化法分离人脐带间充质干细胞,光镜下观察细胞形态;流式细胞仪检测其表面标志;诱导人脐带间充质干细胞向成骨细胞和脂肪细胞进行分化。将人胚胎干细胞系H1接种于丝裂霉素C灭活后的人脐带间充质干细胞上,每隔5d进行一次传代。培养20代后,对人胚胎干细胞特性进行相关检测,包括细胞形态、碱性磷酸酶染色、相关多能性基因的表达、分化能力。结果从人脐带中分离出的间充质干细胞为梭形,呈平行排列生长或漩涡状生长;细胞高表达CD44、CD29、CD73、CD105、CD90、CD86、CD147、CD117,不表达CD14、CD38、CD133、CD34、CD45、HLA-DR;具有分化成脂肪细胞和成骨细胞的潜能。人胚胎干细胞在人脐带间充质干细胞饲养层上培养20代后,继续保持人胚胎干细胞的典型形态,碱性磷酸酶染色为阳性,免疫荧光染色显示OCT4、Nanog、SSEA4、TRA-1-81、TRA-1-60的表达为阳性,SSEA1表达为阴性,体外悬浮培养可以形成拟胚体。结论人脐带间充质干细胞可以作为人胚胎干细胞的饲养层细胞,支持其生长,并维持其未分化生长状态。 相似文献
4.
Over the last several decades, murine embryonic stem cells (mESCs) have been used as a model for human embryonic stem cell (hESC) research. The relevance of this approach has not yet been proven. There is a great deal of evidence that is indicative of substantial differences between these two cell types. An analysis of the literature shows that the differences concern ESC proliferation, self-renewal, and differentiation. Consequently, mESC may be considered as a model object for hESC studies only for some aspects of their biology. The alternative model objects, such as primate ESC, are also discussed briefly in this review. 相似文献
5.
Embryonic stem (ES) cells are unique as they have the potential to be generated in large numbers and the ability to differentiate into the three germ layers via embryoid body (EB) formation. This property could be utilized as an index to study initial mammalian development. We have investigated the utility of a comprehensively characterized human ES (hES) cell line (ReliCellhES1) for testing the embryotoxic effects of compounds using cytotoxicity assays. Further, we performed real time gene expression analysis to check the alterations in germ layer markers expression upon drug treatment. The results show that assays using hES cells could serve as a reliable, sensitive and robust method to assess embryotoxic potential of compounds. They also provide a proof of concept that hES cells can be used as an in vitro model to demonstrate developmental toxicity, and to examine the germ layer-specific effects on differentiating EBs. 相似文献
6.
Zhongyuan Su Rongrong Wu Zhou Tan Ying Li Jingfeng Luo 《Biochemical and biophysical research communications》2010,394(3):616-622
Mesenchymal stem cells (MSCs) have been induced to differentiate successfully from human embryonic stem cells (hES-MSCs), which could serve as an in vitro source of MSCs. However, the homing behaviors of such cells and their potential utility for liver regeneration in vivo have not been reported. We investigated factors that influenced early homing and the hepatic-directed differentiation potency of hES-MSCs in a mouse model of acute liver injury. The hES-MSCs could be detected 36 h after cell infusion and this was unaffected by the number of cell passages in culture. Pretreatment of hES-MSCs with TNF-α resulted in higher rates of homing of these cells to the injured liver. Interestingly most of the cells homing at an early stage expressed alpha-fetoprotein (AFP), indicating hepatic differentiation. Thus, hES-MSCs can home to the acutely injured liver at high efficiency and undergo hepatic differentiation, suggesting that these cells could be useful for treating acute human liver injury. 相似文献
7.
8.
Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells 总被引:10,自引:0,他引:10
Rao M 《Developmental biology》2004,275(2):269-286
The past few years have seen remarkable progress in our understanding of embryonic stem cell (ES cell) biology. The necessity of examining human ES cells in culture, coupled with the wealth of genomic data and the multiplicity of cell lines available, has enabled researchers to identify critical conserved pathways regulating self-renewal and identify markers that tightly correlate with the ES cell state. Comparison across species has suggested additional pathways likely to be important in long-term self-renewal of ES cells including heterochronic genes, microRNAs, genes involved in telomeric regulation, and polycomb repressors. In this review, we have discussed information on molecules known to be important in ES cell self-renewal or blastocyst development and highlighted known differences between mouse and human ES cells. We suggest that several additional pathways required for self-renewal remain to be discovered and these likely include genes involved in antisense regulation, microRNAs, as well as additional global repressive pathways and novel genes. We suggest that cross species comparisons using large-scale genomic analysis tools are likely to reveal conserved and divergent paths required for ES cell self-renewal and will allow us to derive ES lines from species and strains where this has been difficult. 相似文献
9.
Joo-Leng Low Gerrit Jürjens Jayasree Seayad Jasmine Seow Sherwin Ting Filip Laco Shaul Reuveny Steve Oh Christina L.L. Chai 《Bioorganic & medicinal chemistry letters》2013,23(11):3300-3303
The p38α mitogen-activated protein kinase (MAPK) inhibitor SB203580 had been reported to enhance the cardiomyogenesis of human embryonic stem cells (hESCs). To investigate if tri-substituted imidazole analogues of SB203580 are equally effective inducers for cardiomyogenesis of hESCs, and if there is a correlation between p38α MAPK inhibition and cardiomyogenesis, we designed and synthesized a series of novel tri-substituted imidazoles with a range of p38α MAPK inhibitory activities. Our studies demonstrated that suitably designed analogues of SB203580 can also be inducers of cardiomyogenesis in hESCs and that cell growth is affected by changes in the imidazole structures. 相似文献
10.
An improved protocol that induces human embryonic stem cells to differentiate into neural cells in vitro 总被引:1,自引:0,他引:1
Human embryonic stem (ES) cells have the capacity for self-renewal and are able to differentiate into any cell type. However, obtaining high-efficient neural differentiation from human ES cells remains a challenge. This study describes an improved 4-stage protocol to induce a human ES cell line derived from a Chinese population to differentiate into neural cells. At the first stage, embryonic bodies (EBs) were formed in a chemically-defined neural inducing medium rather than in traditional serum or serum-replacement medium. At the second stage, rosette-like structures were formed. At the third stage, the rosette-like structures were manually selected rather than enzymatically digested to form floating neurospheres. At the fourth stage, the neurospheres were further differentiated into neurons. The results show that, at the second stage, the rate of the formation of rosette-like structures from EBs induced by noggin was 88+/-6.32%, higher than that of retinoic acid 55+/-5.27%. Immunocytochemistry staining was used to confirm the neural identity of the cells. These results show a major improvement in obtaining efficient neural differentiation of human ES cells. 相似文献
11.
Salani S Donadoni C Rizzo F Bresolin N Comi GP Corti S 《Journal of cellular and molecular medicine》2012,16(7):1353-1364
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness likely associated with exhaustion of muscle regeneration potential. At present, no cures or efficacious treatments are available for these diseases, but cell transplantation could be a potential therapeutic strategy. Transplantation of myoblasts using satellite cells or other myogenic cell populations has been attempted to promote muscle regeneration, based on the hypothesis that the donor cells repopulate the muscle and contribute to its regeneration. Embryonic stem cells (ESCs) and more recently induced pluripotent stem cells (iPSCs) could generate an unlimited source of differentiated cell types, including myogenic cells. Here we review the literature regarding the generation of myogenic cells considering the main techniques employed to date to elicit efficient differentiation of human and murine ESCs or iPSCs into skeletal muscle. We also critically analyse the possibility of using these cellular populations as an alternative source of myogenic cells for cell therapy of MDs. 相似文献
12.
Human pluripotent stem cells:Towards therapeutic development for the treatment of lifestyle diseases
There are two types of human pluripotent stem cells: Embryonic stem cells(ESCs) and induced pluripotent stem cells(iPSCs),both of which launched themselves on clinical trials after having taken measures to overcome problems: Blocking rejections by immunosuppressants regarding ESCs and minimizing the risk of tumorigenicity by depleting exogenous gene components regarding iP SCs.It is generally assumed that clinical applications of human pluripotent stem cells should be limited to those cases where there are no alternative measures for treatments because of the risk in transplanting those cells to living bodies.Regarding lifestyle diseases,we have already several therapeutic options,and thus,development of human pluripotent stem cell-based therapeutics tends to be avoided.Nevertheless,human pluripotent stem cells can contribute to the development of new therapeutics in this field.As we will show,there is a case where only a short-term presence of human pluripotent stem-derived cells can exert long-term therapeutic effects even after they are rejected.In those cases,immunologically rejections of ESC-or allogenic iP SC-derived cells may produce beneficial outcomes by nullifying the risk of tumorigenesis without deterioration of therapeutic effects.Another utility of human pluripotent stem cells is the provision of an innovative tool for drug discovery that are otherwise unavailable.For example,clinical specimens of human classical brown adipocytes(BAs),which has been attracting a great deal of attention as a new target of drug discovery for the treatment of metabolic disorders,are unobtainable from living individuals due to scarcity,fragility and ethical problems.However,BA can easily be produced from human pluripotent stem cells.In this review,we will contemplate potential contribution of human pluripotent stem cells to therapeutic development for lifestyle diseases. 相似文献
13.
Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture
Huang H Zhao X Chen L Xu C Yao X Lu Y Dai L Zhang M 《Biochemical and biophysical research communications》2006,351(2):321-327
Smooth muscle cell (SMC) plays critical roles in many human diseases, an in vitro system that recapitulates human SMC differentiation would be invaluable for exploring molecular mechanisms leading to the human diseases. We report a directed and highly efficient SMC differentiation system by treating the monolayer-cultivated human embryonic stem cells (hESCs) with all-trans retinoid acid (atRA). When the hESCs were cultivated in differentiation medium containing 10microM RA, more than 93% of the cells expressed SMC-marker genes along with the steadily accumulation of such SMC-specific proteins as SM alpha-actin and SM-MHC. The fully differentiated SMCs were stable in phenotype and capable of contraction. This inducible and highly efficient in vitro human SMC system could be an important resource to study the mechanisms of SMC phenotype determination in human. 相似文献
14.
15.
The role of FGF-signaling in early neural specification of human embryonic stem cells 总被引:1,自引:0,他引:1
The mechanisms that govern human neural specification are not completely characterized. Here we used human embryonic stem cells (hESCs) to study the role of fibroblast growth factor (FGF)-signaling in early human neural specification. Differentiation was obtained by culturing clusters of hESCs in chemically-defined medium. We show that FGF-signaling, which is endogenously active during early differentiation of hESCs, induces early neural specification, while its blockage inhibits neuralization. The early neuralization effect of FGF-signaling is not mediated by promoting the proliferation of existing neural precursors (NPs) or prevention of their apoptosis. The neural instructive effect of FGF-signaling occurs after an initial FGF-independent differentiation into primitive ectoderm-like fate. We further show that FGF-signaling can induce neuralization by a mechanism which is independent of modulating bone morphogenic protein (BMP)-signaling. Still, FGF-signaling is not essential for hESC neuralization which can occur in the absence of FGF and BMP-signaling. Collectively, our data suggest that human neural induction is instructed by FGF-signaling, though neuralization of hESCs can occur in its absence. 相似文献
16.
17.
An analysis of embryonic stem cell (ESC) derivation in vertebrates has revealed that the potential to form ESC is dependent on the setting aside of a pluripotent lineage from extraembryonic lineages early in development. Derivation of ESCs from all amniotes and also many lower vertebrates with that pattern of lineage allocation is thus predictable. Culture conditions during derivation in all groups share some similar characteristics, most of which are related to retaining potency coupled with extensive proliferative capacity. This in turn probably reflects the environment that maintains and causes the primordial germ cells (PGC) to proliferate in vivo. Hence culture usually involves feeder layers and serum or factors derived from them and the use of small clumps of pluriblast or epiblast cells instead of total dissociation, to facilitate cell-cell signalling. Currently addition of FGF has proven to be important but that of LIF has not been fully explored. 相似文献
18.
19.
Ahmed K Elsayed Selvaraj Vimalraj Manjula Nandakumar Essam M Abdelalim 《World journal of stem cells》2021,13(3):221-235
Insulin resistance(IR)is associated with several metabolic disorders,including type 2 diabetes(T2D).The development of IR in insulin target tissues involves genetic and acquired factors.Persons at genetic risk for T2D tend to develop IR several years before glucose intolerance.Several rodent models for both IR and T2D are being used to study the disease pathogenesis;however,these models cannot recapitulate all the aspects of this complex disorder as seen in each individual.Human pluripotent stem cells(hPSCs)can overcome the hurdles faced with the classical mouse models for studying IR.Human induced pluripotent stem cells(hiPSCs)can be generated from the somatic cells of the patients without the need to destroy a human embryo.Therefore,patient-specific hiPSCs can generate cells genetically identical to IR individuals,which can help in distinguishing between genetic and acquired defects in insulin sensitivity.Combining the technologies of genome editing and hiPSCs may provide important information about the genetic factors underlying the development of different forms of IR.Further studies are required to fill the gaps in understanding the pathogenesis of IR and diabetes.In this review,we summarize the factors involved in the development of IR in the insulin-target tissues leading to diabetes.Also,we highlight the use of hPSCs to understand the mechanisms underlying the development of IR. 相似文献
20.
Amy Ferreccio Julie Mathieu Damien Detraux Logeshwaran Somasundaram Christopher Cavanaugh Bryce Sopher 《Cell cycle (Georgetown, Tex.)》2018,17(5):535-549
To easily edit the genome of naïve human embryonic stem cells (hESC), we introduced a dual cassette encoding an inducible Cas9 into the AAVS1 site of naïve hESC (iCas9). The iCas9 line retained karyotypic stability, expression of pluripotency markers, differentiation potential, and stability in 5iLA and EPS pluripotency conditions. The iCas9 line induced efficient homology–directed repair (HDR) and non-homologous end joining (NHEJ) based mutations through CRISPR-Cas9 system. We utilized the iCas9 line to study the epigenetic regulator, PRC2 in early human pluripotency. The PRC2 requirement distinguishes between early pluripotency stages, however, what regulates PRC2 activity in these stages is not understood. We show reduced H3K27me3 and pluripotency markers in JARID2 2iL-I-F hESC mutants, indicating JARID2 requirement in maintenance of hESC 2iL-I-F state. These data suggest that JARID2 regulates PRC2 in 2iL-I-F state and the lack of PRC2 function in 5iLA state may be due to lack of sufficient JARID2 protein. 相似文献