首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Degeneration of intervertebral disc (IVD) is mainly a chronic process of excessive destruction of the extracellular matrix (ECM), and also is thought to be the primary cause of low back pain. Presently, however, the underlying mechanism of IVD degeneration is still not elucidated. Cellular loss from cell death has been believed to contribute to the degradation of ECM and plays an important role in the process of IVD degeneration, but the mechanisms of cell death in degenerated IVD remain unclear. Apoptosis, a very important type of IVD cell death, has been considered to play a crucial role in the process of degeneration. Autophagy, a non-apoptosis death type of programmed cell death, has been considered extensively involved in many pathological and physiological processes, including the degenerative diseases. Thus, the research on cell death in IVD degeneration has become a new focus recently. In this review, by analyzing the available literature pertaining to cell death in IVD and discussing the inducing factors of IVD degeneration, NP cells and ECM in IVD degeneration, apoptotic signal transduction pathways involved in IVD cell death, the relationship of cell death with IVD degeneration and potential therapeutic strategy for IVD degeneration by regulating cell death, we conclude that different stimuli induce cell death in IVD via various signal transduction pathways, and that cell death may play a key role in the degenerative process of IVD. Regulation of cell death could be a potential and attractive therapeutic strategy for IVD degeneration.  相似文献   

2.
Painful degenerative disc diseases have been targeted by different biological treatment approaches. Nucleus pulposus (NP) cells play a central role in intervertebral disc (IVD) maintenance by orchestrating catabolic, anabolic and inflammatory factors that affect the extracellular matrix. IVD degeneration is associated with imbalances of these factors, resulting in a catabolic inflammatory metabolism. Therefore, accurate knowledge about their quantity and quality with regard to matrix synthesis is vital for a rational gene therapeutic approach. NP cells were isolated from 63 patients operated due to lumbar disc herniation (mean age 56 / range 29 - 84 years). Then, three-dimensional culture with low-glucose was completed in a collagen type I scaffold for four weeks. Subsequently cell proliferation evaluation was performed using 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide and intracellular concentration of 28 endogenously expressed anabolic, catabolic, inflammatory factors and relevant matrix proteins was determined by enzyme-linked immunosorbent assay. Specimen-related grades of degeneration were confirmed by preoperative magnetic resonance imaging. Independent from gender, age and grade of degeneration proliferation rates remained similar in all groups of NP cells. Progressive grades of degeneration, however, showed a significant influence on accumulation of selective groups of factors such as disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix metalloproteinase 3, metalloproteinase inhibitor 1 and 2, interleukin-1β and interleukin-1 receptor. Along with these changes, the key NP matrix proteins aggrecan and collagen II decreased significantly. The concentration of anabolic factors bone morphogenetic proteins 2, 4, 6 and 7, insulin-like growth factor 1, transforming growth factor beta 1 and 3, however, remained below the minimal detectable quantities. These findings indicate that progressive degenerative changes in NP may be problematic with regard to biologic treatment strategies. Hence, gene therapeutic interventions regulating relevant bioactive factors identified in this work might contribute to the development of regenerative treatment approaches for degenerative disc diseases.  相似文献   

3.
Although mesenchymal stem cells (MSCs) transplantation into the IVD (intervertebral disc) may be beneficial in inhibiting apoptosis of nucleus pulposus cells (NPCs) and alleviating IVD degeneration, the underlying mechanism of this therapeutic process has not been fully explained. The purpose of this study was to explore the protective effect of MSC‐derived exosomes (MSC‐exosomes) on NPC apoptosis and IVD degeneration and investigate the regulatory effect of miRNAs in MSC‐exosomes and associated mechanisms for NPC apoptosis. MSC‐exosomes were isolated from MSC medium, and its anti‐apoptotic effect was assessed in a cell and rat model. The down‐regulated miRNAs in apoptotic NPCs were identified, and their contents in MSC‐exosomes were detected. The target genes of eligible miRNAs and possible downstream pathway were investigated. Purified MSC‐exosomes were taken up by NPCs and suppressed NPC apoptosis. The levels of miR‐21 were down‐regulated in apoptotic NPCs while MSC‐exosomes were enriched in miR‐21. The exosomal miR‐21 could be transferred into NPCs and alleviated TNF‐α induced NPC apoptosis by targeting phosphatase and tensin homolog (PTEN) through phosphatidylinositol 3‐kinase (PI3K)‐Akt pathway. Intradiscal injection of MSC‐exosomes alleviated the NPC apoptosis and IVD degeneration in the rat model. In conclusion, MSC‐derived exosomes prevent NPCs from apoptotic process and alleviate IVD degeneration, at least partly, via miR‐21 contained in exosomes. Exosomal miR‐21 restrains PTEN and thus activates PI3K/Akt pathway in apoptotic NPCs. Our work confers a promising therapeutic strategy for IVD degeneration.  相似文献   

4.
Degenerative disc disease (DDD) is a painful, chronic and progressive disease, which is characterized by inflammation, structural and biological deterioration of the intervertebral disc (IVD) tissues. DDD is specified as cell-, age-, and genetic-dependent degenerative process that can be accelerated by environmental factors. It is one of the major causes of chronic back pain and disability affecting millions of people globally. Current treatment options, such as physical rehabilitation, pain management, and surgical intervention, can provide only temporary pain relief. Different animal models have been used to study the process of IVD degeneration and develop therapeutic options that may restore the structure and function of degenerative discs. Several research works have depicted considerable progress in understanding the biological basis of disc degeneration and the therapeutic potentials of cell transplantation, gene therapy, applications of supporting biomaterials and bioactive factors, or a combination thereof. Since animal models play increasingly significant roles in treatment approaches of DDD, we conducted an electronic database search on Medline through June 2020 to identify, compare, and discuss publications regarding biological therapeutic approaches of DDD that based on intradiscal treatment strategies. We provide an up-to-date overview of biological treatment strategies in animal models including mouse, rat, rabbit, porcine, bovine, ovine, caprine, canine, and primate models. Although no animal model could profoundly reproduce the clinical conditions in humans; animal models have played important roles in specifying our knowledge about the pathophysiology of DDD. They are crucial for developing new therapy approaches for clinical applications.  相似文献   

5.
Programmed cell death in intervertebral disc degeneration   总被引:6,自引:0,他引:6  
Intervertebral disc (IVD) degeneration is largely a process of destruction and failure of the extracellular matrix (ECM), and symptomatic IVD degeneration is thought to be one of the leading causes of morbidity or life quality deterioration in the elderly. To date, however, the mechanism of IVD degeneration is still not fully understood. Cellular loss from cell death in the process of IVD degeneration has long been confirmed and considered to contribute to ECM degradation, but the causes and the manners of IVD cell death remain unclear. Programmed cell death (PCD) is executed by an active cellular process and is extensively involved in many physiological and pathological processes, including embryonic development and human degenerative diseases. Thus, the relationship between PCD and IVD degeneration has become a new research focus of interest in recent years. By reviewing the available literature concentrated on PCD in IVD and discussing the methodology of detecting PCD in IVD cells, its inducing factors, the relationship of cell death to ECM degradation, and the potential therapy for IVD degeneration by modulation of PCD, we conclude that IVD cells undergo PCD via different signal transduction pathways in response to different stimuli, that PCD may play a role in the process of IVD degeneration, and that modulation of PCD might be a potential therapeutic strategy for IVD degeneration.  相似文献   

6.
Intervertebral disc degeneration is the main cause of low back pain. In the past 20 years, the injection of mesenchymal stromal cells (MSCs) into the nucleus pulposus of the degenerative disc has become the main approach for the treatment of low back pain. Despite the progress made in this field, there are still many barriers to overcome. First, intervertebral disc is a highly complex load-bearing composite tissue composed of annulus fibrosus, nucleus pulposus and cartilaginous endplates. Any structural damage will change its overall biomechanical function, thereby causing progressive degeneration of the entire intervertebral disc. Therefore, MSC-based treatment strategies should not only target the degenerated nucleus pulposus but also include degenerated annulus fibrosus or cartilaginous endplates. Second, to date, there has been relatively little research on the basic biology of annulus fibrosus and cartilaginous endplates, although their pathological changes such as annular tears or fissures, Modic changes, or Schmorl's nodes are more commonly associated with low back pain. Given the high complexity of the structure and composition of the annulus fibrosus and cartilaginous endplates, it remains an open question whether any regeneration techniques are available to achieve their restorative regeneration. Finally, due to the harsh microenvironment of the degenerated intervertebral disc, the delivered MSCs die quickly. Taken together, current MSC-based regenerative medicine therapies to regenerate the entire disc complex by targeting the degenerated nucleus pulposus alone are unlikely to be successful.  相似文献   

7.

Introduction  

Recent evidence suggests that intervertebral disc (IVD) cells derived from degenerative tissue are unable to respond to physiologically relevant mechanical stimuli in the 'normal' anabolic manner, but instead respond by increasing matrix catabolism. Understanding the nature of the biological processes which allow disc cells to sense and respond to mechanical stimuli (a process termed 'mechanotransduction') is important to ascertain whether these signalling pathways differ with disease. The aim here was to investigate the involvement of interleukin (IL)-1 and IL-4 in the response of annulus fibrosus (AF) cells derived from nondegenerative and degenerative tissue to cyclic tensile strain to determine whether cytokine involvement differed with IVD degeneration.  相似文献   

8.
Degeneration of the intervertebral disc (IVD) is a major cause of low back pain affecting a large percentage of the population at some point in their lives. Consequently IVD degeneration and its associated low back pain has a huge socio-economic impact and places a burden on health services world-wide. Current treatments remove the symptoms without treating the underlying problem and can result in reoccurrence in the same or adjacent discs. Tissue engineering offers hope that new therapies can be developed which can regenerate the IVD. Combined with this, development of novel biomaterials and an increased understanding of mesenchymal stem cell and IVD cell biology mean that tissue engineering of the IVD may soon become a reality. However for any regenerative medicine approach to be successful there must first be an understanding of the biology of the tissue and the pathophysiology of the disease process. This review covers these key areas and gives an overview of the recent developments in the fields of biomaterials, cell biology and tissue engineering of the IVD.  相似文献   

9.
Intervertebral disc degeneration (IDD) is a common orthopedic disease associated with mechanical changes that may result in significant pain. Current treatments for IDD mainly depend on conservative therapies and spinal surgeries that are only able to relieve the symptoms but do not address the cause of the degeneration and even accelerate the degeneration of adjacent segments. This has prompted research to improve our understanding of the biology of intervertebral disc healing and into methods to enhance the regenerative process. Recently, biological therapies, including active substances, gene therapy and tissue engineering based on certain cells, have been attracting more attention in the field of intervertebral disc repair and regeneration. Early selection of suitable biological treatment is an ideal way to prevent or even reverse the progressive trend of IDD. Growth factors have been enjoying more popularity in the field of regeneration of IDD and many have been proved to be effective in reversing the degenerative trend of the intervertebral disc. Identification of these growth factors has led to strategies to deliver platelet-derived factors to the intervertebral disc for regeneration. Platelet-rich plasma (PRP) is the latest technique to be evaluated for promoting intervertebral disc healing. Activation of the PRP leads to the release of growth factors from the α-granules in the platelet cytoplasm. These growth factors have been associated with the initiation of a healing cascade that leads to cellular chemotaxis, angiogenesis, synthesis of collagen matrix, and cell proliferation. This review describes the current understanding of IDD and related biological therapeutic strategies, especially the promising prospects of PRP treatment. Future limitations and perspectives of PRP therapy for IDD are also discussed.  相似文献   

10.
The accumulation of senescent disc cells in degenerative intervertebral disc (IVD) suggests the detrimental roles of cell senescence in the pathogenesis of intervertebral disc degeneration (IDD). Disc cell senescence decreased the number of functional cells in IVD. Moreover, the senescent disc cells were supposed to accelerate the process of IDD via their aberrant paracrine effects by which senescent cells cause the senescence of neighboring cells and enhance the matrix catabolism and inflammation in IVD. Thus, anti-senescence has been proposed as a novel therapeutic target for IDD. However, the development of anti-senescence therapy is based on our understanding of the molecular mechanism of disc cell senescence. In this review, we focused on the molecular mechanism of disc cell senescence, including the causes and various molecular pathways. We found that, during the process of IDD, age-related damages together with degenerative external stimuli activated both p53-p21-Rb and p16-Rb pathways to induce disc cell senescence. Meanwhile, disc cell senescence was regulated by multiple signaling pathways, suggesting the complex regulating network of disc cell senescence. To understand the mechanism of disc cell senescence better contributes to developing the anti-senescence-based therapies for IDD.  相似文献   

11.
Intervertebral disc degeneration (IDD), an important cause of chronic low back pain (LBP), is considered the pathological basis for various spinal degenerative diseases. A series of factors, including inflammatory response, oxidative stress, autophagy, abnormal mechanical stress, nutritional deficiency, and genetics, lead to reduced extracellular matrix (ECM) synthesis by intervertebral disc (IVD) cells and accelerate IDD progression. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays a vital role in diverse degenerative diseases. Recent studies have shown that mTOR signalling is involved in the regulation of autophagy, oxidative stress, inflammatory responses, ECM homeostasis, cellular senescence, and apoptosis in IVD cells. Accordingly, we reviewed the mechanism of mTOR signalling in the pathogenesis of IDD to provide innovative ideas for future research and IDD treatment.  相似文献   

12.

Introduction  

The avascular nature of the human intervertebral disc (IVD) is thought to play a major role in disc pathophysiology by limiting nutrient supply to resident IVD cells. In the human IVD, the central IVD cells at maturity are normally chondrocytic in phenotype. However, abnormal cell phenotypes have been associated with degenerative disc diseases, including cell proliferation and cluster formation, cell death, stellate morphologies, and cell senescence. Therefore, we have examined the relative influence of possible blood-borne factors on the growth characteristics of IVD cells in vitro.  相似文献   

13.
Osteoarthritis (OA) and degenerative disc disease (DDD) are similar diseases involving the breakdown of cartilage tissue, and a better understanding of the underlying biochemical processes involved in cartilage degeneration may allow for the development of novel biologic therapies aimed at slowing the disease process. Three members of the fibroblast growth factor (FGF) family, FGF‐2, FGF‐18, and FGF‐8, have been implicated as contributing factors in cartilage homeostasis. The role of FGF‐2 is controversial in both articular and intervertebral disc (IVD) cartilage as it has been associated with species‐ and age‐dependent anabolic or catabolic events. Recent evidence suggests that FGF‐2 selectively activates FGF receptor 1 (FGFR1) to exert catabolic effects in human articular chondrocytes and IVD tissue via upregulation of matrix‐degrading enzyme production, inhibition of extracellular matrix (ECM) accumulation and proteoglycan synthesis, and clustering of cells characteristic of arthritic states. FGF‐18, on the other hand, most likely exerts anabolic effects in human articular chondrocytes by activating the FGFR3 pathway, inducing ECM formation and chondrogenic cell differentiation, and inhibiting cell proliferation. These changes result in dispersed chondrocytes or disc cells surrounded by abundant matrix. The role of FGF‐8 has recently been identified as a catabolic mediator in rat and rabbit articular cartilage, but its precise biological impact on human adult articular cartilage or IVD tissue remains unknown. The available evidence reveals the promise of FGF‐2/FGFR1 antagonists, FGF‐18/FGFR3 agonists, and FGF‐8 antagonists (i.e., anti‐FGF‐8 antibody) as potential therapies to prevent cartilage degeneration and/or promote cartilage regeneration and repair in the future. J. Cell. Biochem. 114: 735–742, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
As our understanding of the physiopathology of intervertebral disc (IVD) degeneration has improved, novel therapeutic strategies have emerged, based on the local injection of cells, bioactive molecules, and nucleic acids. However, with regard to the harsh environment constituted by degenerated IVDs, protecting biologics from in situ degradation while allowing their long-term delivery is a major challenge. Yet, the design of the optimal approach for IVD regeneration is still under debate and only a few papers provide a critical assessment of IVD-specific carriers for local and sustained delivery of biologics. In this review, we highlight the IVD-relevant polymers as well as their design as macro-, micro-, and nano-sized particles to promote endogenous repair. Finally, we illustrate how multiscale systems, combining in situ-forming hydrogels with ready-to-use particles, might drive IVD regenerative medicine strategies toward innovation.  相似文献   

15.
16.
椎间盘(IVD)退变是一种常见的病理状态,保守治疗往往失败,IVD变性的患者最后往往需要手术干预。已经提出的几种治疗方案中,只有椎间盘切除术和关节融合术被证明可以达到预料的效果。生物治疗的目的是预防和控制椎间盘变性,改善椎间盘的功能、髓核和纤维环细胞的合成代谢和修复能力,并抑制基质降解。目前,临床应用仍处于起步阶段。间充质干细胞和基因治疗在预防和治疗IVD变性的作用还需要进一步的研究。最近的研究向我们展示了一种新的保护椎间盘的结构和功能的治疗策略:间充质干细胞(MSCs)移植,尤其是骨髓间充质干细胞(BM-MSCs)。而了解MSCs是否可以以及如何在有排拆性的退化的椎间盘中存活并繁殖是十分重要的。因此,本文着重讨论内源性蛋白酶、细胞因子、低氧、低营养、机械负荷及渗透压的调节对移植的MSCs的影响。  相似文献   

17.
Low back pain (LBP) is one of the most common painful conditions that lead to work absenteeism, medical visits, and hospitalization. The majority of cases showing signs of LBP are due to age-related degenerative changes in the intervertebral disk (IVD), which are, in fact, associated with multiple spine pathologies. Traditional and more conservative procedures/clinical approaches only treat the symptoms of disease and not the underlying pathology, thus limiting their long-term efficiency. In the last few years, research and development of new approaches aiming to substitute the nucleus pulposus and annulus fibrosus tissue and stimulate its regeneration has been conducted. Regeneration of the damaged IVD using tissue engineering strategies appears particularly promising in pre-clinical studies. Meanwhile, surgical techniques must be adapted to this new approach in order to be as minimally invasive as possible, reducing recovering time and side effects associated to traditional surgeries. In this review, the current knowledge on IVD, its associated pathologies and current surgical procedures are summarized. Furthermore, it also provides a succinct and up-to-date overview on regenerative medicine research, especially on the newest tissue engineering strategies for IVD regeneration.  相似文献   

18.
19.
In a recent article, the authors provide a detailed summary of the characteristics and biological functions of mesenchymal stem cells (MSCs), as well as a discussion on the potential mechanisms of action of MSC-based therapies. They describe the morphology, biogenesis, and current isolation techniques of exosomes, one of the most important fractions of the MSC-derived secretome. They also summarize the characteristics of MSC-derived exosomes and highlight their functions and therapeutic potential for tissue/organ regeneration and for kidney, liver, cardiovascular, neurological, and musculoskeletal diseases, as well as cutaneous wound healing. Despite the fact that MSCs are regarded as an important pillar of regenerative medicine, their regenerative potential has been demonstrated to be limited in a number of pathological conditions. The negative effects of MSC-based cell therapy have heightened interest in the therapeutic use of MSC-derived secretome. On the other hand, MSC-derived exosomes and microvesicles possess the potential to have a significant impact on disease development, including cancer. MSCs can interact with tumor cells and promote mutual exchange and induction of cellular markers by exchanging secretome. Furthermore, enzymes secreted into and activated within exosomes can result in tumor cells acquiring new properties. As a result, therapeutic applications of MSC-derived secretomes must be approached with extreme caution.  相似文献   

20.
Low back pain is a common clinical problem, which leads to significant social, economic and public health costs. Intervertebral disc (IVD) degeneration is accepted as a common cause of low back pain. Initially, this is characterized by a loss of proteoglycans from the nucleus pulposus resulting in loss of tissue hydration and hydrostatic pressure. Conservative management, including analgesia and physiotherapy often fails and surgical treatment, such as spinal fusion, is required. Stem cells offer an exciting possible regenerative approach to IVD disease. Preclinical research has demonstrated promising biochemical, histological and radiological results in restoring degenerate IVDs. Cell tracking provides an opportunity to develop an in-depth understanding of stem cell survival, differentiation and migration, enabling optimization of stem cell treatment. Magnetic Resonance Imaging (MRI) is a non-invasive, non-ionizing imaging modality with high spatial resolution, ideally suited for stem cell tracking. Furthermore, novel MRI sequences have the potential to quantitatively assess IVD disease, providing an improved method to review response to biological treatment. Superparamagnetic iron oxide nanoparticles have been extensively researched for the purpose of cell tracking. These particles are biocompatible, non-toxic and act as excellent MRI contrast agents. This review will explore recent advances and issues in stem cell tracking and molecular imaging in relation to the IVD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号