首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human umbilical cord(UC)is a promising source of mesenchymal stem cells(MSCs).Apart from their prominent advantages,such as a painless collection procedure and faster self-renewal,UC-MSCs have shown the ability to differentiate into three germ layers,to accumulate in damaged tissue or inflamed regions,to promote tissue repair,and to modulate immune response.There are diverse protocols and culture methods for the isolation of MSCs from the various compartments of UC,such as Wharton’s jelly,vein,arteries,UC lining and subamnion and perivascular regions.In this review,we give a brief introduction to various compartments of UC as a source of MSCs and emphasize the potential clinical utility of UC-MSCs for regenerative medicine and immunotherapy.  相似文献   

2.
《Phytomedicine》2014,21(3):247-253
In the present study, we report the effects of the ethanol extract from Mallotus philippinensis bark (EMPB) on mesenchymal stem cell (MSC) proliferation, migration, and wound healing in vitro and in a mouse model. Chemotaxis assays demonstrated that EMPB acted an MSC chemoattractant and that the main chemotactic activity of EMPB may be due to the effects of cinnamtannin B-1. Flow cytometric analysis of peripheral blood mononuclear cells in EMPB-injected mice indicated that EMPB enhanced the mobilization of endogenous MSCs into blood circulation. Bioluminescent whole-animal imaging of luciferase-expressing MSCs revealed that EMPB augmented the homing of MSCs to wounds. In addition, the efficacy of EMPB on migration of MSCs was higher than that of other skin cell types, and EMPB treatment improved of wound healing in a diabetic mouse model. The histopathological characteristics demonstrated that the effects of EMPB treatment resembled MSC-induced tissue repair. Taken together, these results suggested that EMPB activated the mobilization and homing of MSCs to wounds and that enhancement of MSC migration may improve wound healing.  相似文献   

3.

Background

Chronic wounds present a major challenge in modern medicine. Even under optimal conditions, the healing process may lead to scarring and fibrosis. The ability of mesenchymal stem cells (MSCs) to differentiate into other cell types makes these cells an attractive therapeutic tool for cell transplantation. Both tissue-engineered construct and MSC therapy are among the current wound healing procedures and potential care. Chitosan has been widely applied in tissue engineering because of its biocompatibility and biodegradability.

Aim

The aim of the current work was to compare the efficiency of MSCs and chitosan dressing, alone or in combination treatment on wound healing.

Methods

This study was conducted on 15 rabbits, which were randomly divided in 3 groups based on the type of treatment with MSCs, chitosan dressing and combination of both. A full–thickness skin defect was excised from the right and left side of the back of each animals. Defects on right sides were filled with treatments and left side defects were left as control. Evaluation of the therapeutic effectiveness was performed through a variety of clinical and microscopical evaluations and measurements of the process of wound healing on days 7, 14, 21, and 28. Histological evaluation of wound healing was classified by different scoring systems.

Results

The data indicated that wounds treated with bone marrow derived MSC had enhanced cellularity and better epidermal regeneration. During the early stages of wound healing, the closure rate of bone marrow derived MSC-treated wounds were significantly higher than other treatments (P < 0.05). Although the MSCs in the wound edges enhance the healing of the full–thickness wound, the healing process of chitosan treatment was slower than the control group.

Conclusion

This study revealed advanced granulation tissue formation and epithelialization in wounds treated with MSCs, and may suggests this treatment as an effective applicant in wound healing process. Chitosan scaffold dressings, whether alone or in combination with MSCs, have worsened the wound healing as compared to the control group.  相似文献   

4.
Mesenchymal stem cells (MSCs) are mesoderm-derived cells that are considered a good source of somatic cells for treatment of many degenerative diseases. Previous studies have reported the differentiation of mesodermal MSCs into endodermal and ectodermal cell types beyond their embryonic lineages, including hepatocytes and neurons. However, the molecular pathways responsible for the direct or indirect cell type conversion and the functional ability of the differentiated cells remain unclear and need further research. In the present study, we demonstrated that valproic acid (VPA), which is a histone deacetylase inhibitor, induced an increase in the expression of endodermal genes including CXCR4, SOX17, FOXA1, FOXA2, GSC, c-MET, EOMES, and HNF-1β in human umbilical cord derived MSCs (hUCMSCs). In addition, we found that VPA is able to increase these endodermal genes in hUCMSCs by activating signal transduction of AKT and ERK. VPA pretreatment increased hepatic differentiation at the expense of adipogenic differentiation. The effects of VPA on modulating hUCMSCs fate were diminished by blocking AKT and ERK activation using specific signaling inhibitors. Together, our results suggest that VPA contributes to the lineage conversion of hUCMSCs to hepatic cell fate by upregulating the expression of endodermal genes through AKT and ERK activation.  相似文献   

5.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

6.
Poor healing of cutaneous wounds is a common medical problem in the field of traumatology. Due to the intricate pathophysiological processes of wound healing, the use of conventional treatment methods, such as chemical molecule drugs and traditional dressings, have been unable to achieve satisfactory outcomes. Within recent years, explicit evidence suggests that mesenchymal stem cells (MSCs) have great therapeutic potentials on skin wound healing and regeneration. However, the direct application of MSCs still faces many challenges and difficulties. Intriguingly, exosomes as cell-secreted granular vesicles with a lipid bilayer membrane structure and containing specific components from the source cells may emerge to be excellent substitutes for MSCs. Exosomes derived from MSCs (MSC-exosomes) have been demonstrated to be beneficial for cutaneous wound healing and accelerate the process through a variety of mechanisms. These mechanisms include alleviating inflammation, promoting vascularization, and promoting proliferation and migration of epithelial cells and fibroblasts. Therefore, the application of MSC-exosomes may be a promising alternative to cell therapy in the treatment of cutaneous wounds and could promote wound healing through multiple mechanisms simultaneously. This review will provide an overview of the role and the mechanisms of MSC-derived exosomes in cutaneous wound healing, and elaborate the potentials and future perspectives of MSC-exosomes application in clinical practice.  相似文献   

7.
Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed to enhance the clinical use of MSC are emphasized. This work was supported by grants from the Danish Medical Research Council, Danish Center for Stem Cell Research, and Novo Nordisk Foundation.  相似文献   

8.
The human umbilical cord (hUC) is a source of adult tissue-derived mesenchymal stem cells (MSCs). A pulsed low-intensity ultrasound (PLIUS) method is described for increasing the yield of MSCs from whole hUC without enzymatic digestion or growth factor supplementation. Analysis of the immunophenotype of cells and a differentiation study were performed to show the compatibility of MSCs. The mean number of cells recovered from primocultures of hUC was 6 × 105 cells/cm. PLIUS resulted in a 3.3-fold increase in MSC yield at passage 0. PLIUS exposure increases the yield of hUC-MSCs by promoting release and enhancing proliferation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
We have investigated the wound-healing effects of mesenchymal stem cells (MSCs) in combination with human amniotic membrane (HAM) when grafted into full-thickness skin defects of rabbits. Five defects in each of four groups were respectively treated with HAM loaded with autologous MSCs (group A), HAM loaded with allologous MSCs (group B), HAM with injected autologous MSCs (group C), and HAM with injected allologous MSCs (group D). The size of the wounds was calculated for each group at 7, 12, and 15 days after grafting. The wounds were subsequently harvested at 25 days after grafting. Sections stained with hematoxylin and eosin were used to determine the quality of wound healing, as based on the characteristics and amount of granulated tissue in the epidermal and dermal layers. Groups A and B showed the most pronounced effect on wound closure, with statistically significant improvement in wound healing being seen on post-operative days 7, 12, and 15. Although a slight trend toward improved wound healing was seen in group A compared with group B, no statistically significant difference was found at any time point between the two groups. Histological examination of healed wounds from groups A and B showed a thin epidermis with mature differentiation and collagen bundle deposition plus recovered skin appendages in the dermal layer. In contrast, groups C and D showed thickened epidermis with immature epithelial cells and increased fibroblast proliferation with only partially recovered skin appendages in the dermal layer. Thus, the graft of HAM loaded with MSCs played an effective role during the healing of skin defects in rabbits, with no significant difference being observed in wound healing between autologous and allologous MSC transplantation. This study was supported by research funds from Dong-A University.  相似文献   

10.
In vertebrates, bone is considered an osteoimmune system which encompasses functions of a locomotive organ, a mineral reservoir, a hormonal organ, a stem cell pool and a cradle for immune cells. This osteoimmune system is based on cooperatively acting bone and immune cells, cohabitating within the bone marrow. They are highly interdependent, a fact that is confounded by shared progenitors, mediators, and signaling pathways. Successful fracture healing requires the participation of all the precursors, immune and bone cells found in the osteoimmune system. Recent evidence demonstrated that changes of the immune cell composition and function may negatively influence bone healing. In this review, first the interplay between different immune cell types and osteoprogenitor cells will be elaborated more closely. The separate paragraphs focus on the specific cell types, starting with the cells of the innate immune response followed by cells of the adaptive immune response, and the complement system as mediator between them. Finally, a brief overview on the challenges of preclinical testing of immune-based therapeutic strategies to support fracture healing will be given.  相似文献   

11.
Mesenchymal stem cells (MSCs) are promising candidates for bone regeneration therapies due to their plasticity and easiness of sourcing. MSC-based treatments are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and osteogenic differentiation. Many studies have proposed modifications to improve MSC engraftment and osteogenic differentiation of the transplanted cells. Several strategies are aimed to improve cell resistance to the hostile microenvironment found in the recipient tissue and increase cell survival after transplantation. These strategies could range from a simple modification of the culture conditions, known as cell-preconditioning, to the genetic modification of the cells to avoid cellular senescence. Many efforts have also been done in order to enhance the osteogenic potential of the transplanted cells and induce bone formation, mainly by the use of bioactive or biomimetic scaffolds, although alternative approaches will also be discussed. This review aims to summarize several of the most recent approaches, providing an up-to-date view of the main developments in MSC-based regenerative techniques.  相似文献   

12.
AIM:To compare the efficacy of cell-free derivatives from Bone marrow derived human mesenchymal stem cells(hMSCs) in wound therapy.METHODS:hMSCs have been shown to play an important role in wound therapy.The present study sought to compare efficacy of hMSCs and cell-free derivatives of hMSCs,which may be clinically more relevant as they are easier to prepare,formulate and transport.hMSCs were isolated from human bone marrow and cultured.Multi lineage differentiation of hMSCs was performed to confirm their identity.The ability of hMSCs to migrate was evaluated using in vitro and in vivo migration assays.Cell lysates and conditioned medium concentrate was prepared from hMSCs(see Methods for details).Wounds were induced in mice and wound areas were measure before and after cell and cell-free derivative treatment.RNA and proteins were extracted from the skin and cytokine levels were measured.RESULTS:Co-culture of hMSCs with keratinocytes resulted in increased expression of CXCL-12(SDF1) and ENA78(CXCL-5) in the conditioned media indicating that the hMSCs can respond to signals from keratinocytes.Accelerated wound closure was observed when hMSCs were injected near the site of excisional wounds in athymic as well as NOD/SCID mice.Interestingly,cell-free lysates prepared from hMSCs were also effective in inducing accelerated wound closure and increased expression of SDF1 and CXCL-5 at the wound bed.Additionally,concentrated media from hMSCs as well as an emulsion containing lysates prepared from hMSCs was also found to be more effective in rapid re-epithelialization than fibroblasts or vehicle-alone control.Use of cell-free derivatives may help replace expensive wound care approaches including use of growth factors,epidermal/dermal substitutes,synthetic membranes,cytokines,and matrix components,and most importantly avoid transmission of pathogens from human and animal products.CONCLUSION:These results encourage development of derivatives of hMSCs for wound care and re-epithelialization applications.  相似文献   

13.
Cardiomyocyte loss in the ischemically injured human heart often leads to irreversible defects in cardiac function. Recently, cellular cardiomyoplasty with mesenchymal stem cells, which are multipotent cells with the ability to differentiate into specialized cells under appropriate stimuli, has emerged as a new approach for repairing damaged myocardium. In the present study, the potential of human umbilical cord-derived mesenchymal stem cells to differentiate into cells with characteristics of cardiomyocyte was investigated. Mesenchymal stem cells were isolated from endothelial/subendothelial layers of the human umbilical cords using a method similar to that of human umbilical vein endothelial cell isolation. Isolated cells were characterized by transdifferentiation ability to adipocytes and osteoblasts, and also with flow cytometry analysis. After treatment with 5-azacytidine, the human umbilical cord-derived mesenchymal stem cells were morphologically transformed into cardiomyocyte-like cells and expressed cardiac differentiation markers. During the differentiation, cells were monitored by a phase contrast microscope and their morphological changes were demonstrated. Immunostaining of the differentiated cells for sarcomeric myosin (MF20), desmin, cardiac troponin I, and sarcomeric alpha-actinin was positive. RT-PCR analysis showed that these differentiated cells express cardiac-specific genes. Transmission electron microscopy revealed a cardiomyocyte-like ultrastructure and typical sarcomers. These observations confirm that human umbilical cord-derived mesenchymal stem cells can be chemically transformed into cardiomyocytes and can be considered as a source of cells for cellular cardiomyoplasty.  相似文献   

14.
Mesenchymal stem cells (MSCs) are under intensive investigation for use in cell-based therapies because their differentiation abilities, immunomodulatory effects, and homing properties offer potential for significantly augmenting regenerative capacity of many tissues. Nevertheless, major impediments to their therapeutic application, such as low proliferation and survival rates remain as obstacles to broad clinical use of MSCs. Another major challenge to evolution of MSC-based therapies is functional degradation of these cells as a result of their exposure to oxidative stressors during isolation. Indeed, oxidative stress-mediated MSC depletion occurs due to inflammatory processes associated with chemotherapy, radiotherapy, and expression of pro-apoptotic factors, and the microenvironment of damaged tissue in patients receiving MSC therapy is typically therapeutic not favorable to their survival. For this reason, any strategies that enhance the viability and proliferative capacity of MSCs associated with their therapeutic use are of great value. Here, recent strategies used by various researchers to improve MSC allograft function are reviewed, with particular focus on in vitro conditioning of MSCs in preparation for clinical application. Preconditioning, genetic manipulation, and optimization of MSC culture conditions are some examples of the methodologies described in the present article, along with novel strategies such as treatment of MSCs with secretome and MSC-derived microvesicles. This topic material is likely to find value as a guide for both research and clinical use of MSC allografts and for improvement of the value that use of these cells brings to health care.  相似文献   

15.
Mesenchymal stem cells(MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T(Treg) and B(Breg) cells. The induction of Treg and Breg cells is of particular interest since Treg and Breg cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of Treg and Breg cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce Treg and Breg cells to provoke immunosuppression.  相似文献   

16.
Mesenchymal stem cells(MSCs), multipotential cells that reside within the bone marrow, can be induced to differentiate into various cells, such as osteoblasts, adipocytes, chondrocytes, vascular endothelial progenitor cells, and other cell types. MSCs are being widely studied as potential cell therapy agents due to their angiogenic properties, which have been well established by in vitro and in vivo researches. Within this context, MSCs therapy appears to hold substantial promise, particularly in the treatment of conditions involving skin grafts, pedicle flaps, as well as free flaps described in literatures. The purpose of this review is to report the new advances and mechanisms underlying MSCs therapy against skin flaps necrosis.  相似文献   

17.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

18.
Although much progress has been made in the treatment of gliomas, the prognosis for patients with gliomas is still very poor. Stem cell-based therapies may be promising options for glioma treatment. Recently, many studies have reported that umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) are ideal gene vehicles for tumor gene therapy. Interleukin 24 (IL-24) is a pleiotropic immunoregulatory cytokine that has an apoptotic effect on many kinds of tumor cells and can inhibit the growth of tumors specifically without damaging normal cells. In this study, we investigated UC-MSCs as a vehicle for the targeted delivery of IL-24 to tumor sites. UC-MSCs were transduced with lentiviral vectors carrying green fluorescent protein (GFP) or IL-24 complementary DNA. The results indicated that UC-MSCs could selectively migrate to glioma cells in vitro and in vivo. Injection of IL-24-UC-MSCs significantly suppressed tumor growth of glioma xenografts. The restrictive efficacy of IL-24-UC-MSCs was associated with the inhibition of proliferation as well as the induction of apoptosis in tumor cells. These findings indicate that UC-MSC-based IL-24 gene therapy may be able to suppress the growth of glioma xenografts, thereby suggesting possible future therapeutic use in the treatment of gliomas.  相似文献   

19.
骨髓间质干细胞修复受损心肌研究进展   总被引:2,自引:1,他引:2  
骨髓间充质干细胞是一种多潜能干细胞。在体外培养时,多种诱导因素可使其分化为心肌细胞等。目前进行的动物实验和临床研究表明骨髓间充质干细胞具有促进血管增生以及改善心肌梗死后心脏功能的作用,为受损心肌的治疗提供了广阔前景。但是其修复受损心肌的机制仍具有很大争议。本文就以上内容进行综述。  相似文献   

20.
Adult mesenchymal stem cells possess a remarkably diverse array of immunosuppressive characteristics. The capacity to suppress the regular processes of allogeneic rejection, have allowed the use of tissue mismatched cells as therapeutic approaches in regenerative medicine and as agents of immune deviation. This review describes recent advances in understanding the mechanistic basis of mesenchymal stromal or stem cells (MSC) interaction with innate immunity. Particular emphasis is placed on the effect of Toll-like receptor signalling on MSC and a hypothesis that innate immune signals induce a 'licensing switch' in MSC is put forward. The mechanisms underlying MSC suppression of T cell responses and induction of regulatory populations are surveyed. Conflicting data regarding the influence of MSC on B cell function are outlined and discussed. Finally the limits to MSC mediated immune modulation are discussed with reference to the future clinical application of novel cell therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号