首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glucose and ammonia production were examined in kidney tubules isolated from suckling and early-weaned lambs, on days 10-30 after birth, with abrupt weaning occurring at day 14. There were no differences in the rates of glucose or ammonia production for a given substrate by tubules isolated from any of the lambs, regardless of age or stage of weaning. The preferred substrates for gluconeogenesis were glycerol = lactate greater than propionate = pyruvate = fructose = proline greater than alanine greater than glutamate greater than glutamine greater than aspartate greater than glycine greater than serine, and for ammoniagenesis were glutamine much greater than alanine greater than aspartate much greater than serine greater than glycine = glutamate = proline.  相似文献   

2.
1. Isolated lamb liver cells were prepared from 24-h-starved animals by venous perfusion of the excised caudate lobe with buffer containing collagenase. On the basis of Trypan-Blue exclusion, rate of O2 uptake, adenine nucleotide content and retention of constitutive enzymes, these cells were judged to be intact. 2. Isolated caudate-lobe liver cells showed rates of gluconeogenesis from 10 mM-propionate and 10 mM-lactate that compared favourably with rates determined in isolated median-lobe cells and with rates determined with the isolated perfused lamb liver. 3. The gluconeogenic potential of substrates tested depended on the lamb's age. Cells prepared from suckling lambs (up to 20 days of age and essentially non-ruminant) showed highest rates from galactose, serine and alanine; those prepared from post-weaned lambs (older than 30 days of age and ruminant) showed highest rates from propionate, lactate and fructose. 4. Gluconeogenic rates from endogeneous precursors, 10 mM-propionate and 10mM-galactose, were linear for 1 h and were both stimulated by 1 muM-glucagon. Provided the endogenous rate of gluconeogenesis remained unchanged after substrate addition, glucagon caused a net stimulation of gluconeogenesis from each of these substrates. 5. Gluconeogenic capacity and glucagon sensitivity were examined in cells maintained in substrate-free oxygenated buffer at 37 degrees, 22 degrees and * degrees C. Even under the best of the three conditions of storage that were tested (i.e. at 22 degrees C in gelatin-containing buffer) deterioration of the lamb cells proceeded rapidly, and loss of glucagon responsiveness preceeded the loss of ability to convert precursor into glucose. 6. n-Butyric acid, 2-methylpropanoic acid and 3-methylbutanoic acid at concentrations comparable with those found in lamb portal-vein blood each stimulated gluconeogenesis from 10mM-galactose or 10mM-propionate; gluconeogenesis from galactose was stimulated to the greater extent. 7. The regulatory effects of glucagon and sodium butyrate on lamb liver-cell gluconeogenesis and glycogenolysis were compared. Glucagon (1 muM) and 2mM-butyrate accelerated the rate of glucose formation of liver cells of 24h-starved animals from lactate+pyruvate or fructose. Insulin (20nM) decreased both gluconeogenesis and the efficacy of 1 muM-glucagon. For lactate+pyruvate as substrate, the stimulatory effect of butyrate was additive to that of 1muM-glucagon and for both lactate+pyruvate and fructose the stimulatory effect of butyrate was not influenced by 20nM-insulin. In contrast with glucagon, which stimulated the rate of glycogenolysis in cells prepared from fed lambs, butyrate (0.1-20mM) had no effect. 8. It is concluded that glucagon and butyrate stimulate lamb liver-cell gluconeogenesis by different mechanisms.  相似文献   

3.
Carbohydrate metabolism in liver from foetal and neonatal sheep   总被引:5,自引:4,他引:1       下载免费PDF全文
1. During development of the sheep, the activities of UDP-glucose–α-glucan glucosyltransferase and UDP-glucose pyrophosphorylase and the glycogen content are highest in the liver of lambs 2 weeks old and considerably lower in liver from adult sheep. 2. The activity of hexokinase and the rate of incorporation of [14C]-glucose into glycogen are much lower in liver from postnatal sheep than in rat liver. 3. The activities of hexose diphosphatase and glucose 6-phosphatase and the rates of incorporation of [14C]pyruvate and [14C]propionate into glycogen increase from low levels in the liver of foetal sheep to maxima a few weeks after birth. The activities in the liver of adult sheep are slightly lower. 4. The incorporation rate of [14C]pyruvate into glucose has been measured in liver slices from rats, sheep and chick embryos at several ages of these animals. This pathway is active in liver from foetal sheep, embryonic chicks and postnatal rats or sheep, but is absent from the liver from foetal rats. 5. Fructose metabolism, as measured by the rates of incorporation of [14C]fructose into glycogen and glucose in liver slices and by assays of liver ketohexokinase, is barely detectable in the liver of foetal sheep and appears soon after birth. 6. During development of the sheep, the incorporation rate of [14C]galactose into glycogen in liver slices is highest in foetal sheep and decreases with increasing age of the animal. 7. These findings are discussed with reference to the changing pattern of carbohydrate metabolism during neonatal development of liver in the sheep.  相似文献   

4.
Aspects of adipose-tissue metabolism in foetal lambs.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The mean volume of adipocytes, the rates of fatty acid and acylglycerol glycerol synthesis from various precursors (in vitro), the rates of oxidation of acetate and glucose (in vitro) and the activities of lipoprotein lipase and various lipogenic enzymes were determined for perirenal adipose tissue from foetal lambs during the last month of gestation. 2. The fall in the rate of growth of perirenal adipose tissue during the last month of gestation is associated with a diminished capacity for fatty acid synthesis and lipoprotein lipase activity, but no change in the rate of acylglycerol glycerol synthesis was observed. There was no fall in the activities of cytosolic acetyl-CoA synthetase or the NADP-linked dehydrogenases, suggesting that the decrease in the rate of fatty acid synthesis was due to an impairment at the level of acetyl-CoA carboxylase or fatty acid synthetase. 3. The rate of fatty acid synthesis from acetate was greater than that from glucose. The rate of fatty acid synthesis from glucose per adipocyte of foetal lambs was similar to that of young sheep. The characteristic metabolism of adipose tissue of the adult sheep is thus present in the foetus, despite the relatively large amounts of glucose in the foetal 'diet'.  相似文献   

5.
The rates of incorporation of 14C from 14C labelled acetate, glucose, alanine, leucine, isoleucine and valine into fatty acids has been measured in perirenal adipose tissue from foetal lambs and 8-month-old sheep, and into both fatty acids and acylglycerol glycerol in adipose tissue from 3-year-old sheep and 220-240 g female rats. Rates of incorporation of 14C from amino acids into fatty acids were much lower in adipose tissue from sheep (at all three ages) than from rats, whereas rates of incorporation of 14C into acylglycerol glycerol were either greater in sheep adipose tissue or the same as in rat adipose tissue. The rate of incorporation of 14C from amino acids into fatty acids decreased in the order leucine greater than alanine greater than isoleucine greater than valine in adipose tissue from rats and foetal lambs, and in the order leucine greater than alanine = isoleucine greater than valine in adipose tissue from 8-month- and 3-year-old sheep. Amino acids make a very small contribution to fatty acid synthesis in adipose tissue from sheep at all stages of development examined while fatty acids are a minor product of amino acid metabolism in sheep adipose tissue. The study provides further evidence for an important role for ATP-citrate lyase in restricting the utilization of acetyl-CoA generated in the mitochondria for fatty acid synthesis.  相似文献   

6.
The metabolism by the fetus and placenta of [2-3H, U-14C]glucose infused into fetal sheep has been studied. Uptake of glucose from the fetus by the placenta and transfer to the ewe, as well as placental metabolism of glucose to fructose and lactate have been quantified. About two-thirds of the glucose removed from the fetal circulation was taken up by placenta. Less than 15% of this passed back into the maternal circulation, the remainder was converted, at roughly equivalent rates, into lactate and fructose, most of which was transferred back to the fetus. It seems likely that little of this glucose is oxidised by the placenta. This data indicates that there are substrate cycles between the placenta and fetus, one possible function of which is to limit fetal glucose loss back to the mother; lactate and fructose have limited placental permeability. At uterine blood flow rates in the middle of the normal range net glucose uptake by the placenta from the maternal circulation was about 7-fold higher than that from the fetus. About 20% of this was transported to the fetus, 50% was oxidised and much of the remainder converted to lactate and transferred back to the ewe. Labelling patterns in fructose and lactate make it unlikely that this placental pool of glucose mixes freely with that derived from uptake from the fetus. Net movement of glucose across the placenta is markedly influenced by fluctuations in uterine blood flow over the normal range of 500-3000 ml/min. At low flow rates there is net output of glucose from the fetus to the placenta, and in some instances from the placenta to the ewe, i.e. there is evidence of net utero-placental production of glucose to the ewe separate from output by the fetus. There is a close linear relationship between uterine glucose supply (maternal arterial concentration x uterine blood flow) and net balance across the placenta. As uterine supply of glucose falls there is increased uptake by the placenta of glucose from the fetal circulation and corresponding enhanced recycling of fructose and lactate to the fetus. This production of fructose and lactate by the placenta may function to reduce glucose loss from the fetus to the ewe. Hence at high rates of placental uptake of glucose from the fetus placental production of lactate and particularly fructose may approach saturation and allow significant backflow of glucose from the fetus to the ewe. Under these conditions glucose uptake may in part sustain placental oxygen consumption.  相似文献   

7.
1. The activities of some key enzymes of glycolysis and gluconeogenesis were measured in embryonic chick, sheep and rat livers. 2. In chicken the activities of hexokinase, phosphofructokinase and pyruvate kinase are low, but those of glucose 6-phosphatase and fructose diphosphatase are very high; the converse situation exists in the rat (Burch et al. 1963), but in sheep the activities of both phosphofructokinase and fructose diphosphatase are high, and the activities of hexokinase and glucose 6-phosphatase are low. These findings are discussed in relation to carbohydrate metabolism in these embryonic livers. 3. The regulatory properties of fructose diphosphatase from the embryonic livers of these three species were compared with the properties of the enzymes from adult animals. The inhibitions by AMP and fructose diphosphate and the effects of Mg(2+) and pH on the activities of adult and foetal fructose diphosphatase are almost identical. 4. It is concluded that regulatory properties are characteristic of fructose diphosphatase from embryonic and adult tissue, and the importance of this in relation to enzyme development is discussed.  相似文献   

8.
1. Glucose phosphorylation rates of about 1 mumole/g./min. have been measured at room temperature in homogenates of human placental chorionic villi, and these rates are relatively constant throughout gestation. 2. This reaction has an apparent K(m) for glucose of 3x10(-5)m both in early and term placenta. 3. Human foetal membranes, the amnion and chorion, also phosphorylate glucose at a rate about equal to that of the placenta. 4. On incubation of intact bits of villus tissue from 8-12-week or full-term placenta with labelled pyruvate, followed by paper chromatography of the tissue extract, the following distribution of label was observed: residual pyruvate, 40-60%; lactate, 30-50%; glucose, 6%; fructose, 7%; sorbitol, 0.6%. 5. The concept of the placenta acting as a foetal liver during early pregnancy is inconsistent with the observation that glucose production by this organ persists up to term.  相似文献   

9.
Injection of insulin to fed rats diminished the concentration of fructose 2,6-bisphosphate in white adipose tissue. Incubation of epididymal fat-pads or adipocytes with insulin stimulated lactate release and sugar detritiation and also decreased fructose 2,6-bisphosphate concentration. Such a decrease was, however, not observed in fat-pads from starved or alloxan-diabetic rats. Incubation of adipocytes from fed rats with various concentrations of glucose or fructose led to a dose-dependent rise in fructose 2,6-bisphosphate which correlated with lactate output and detritiation of 3-3H-labelled sugar. In adipocytes from fed rats, palmitate stimulated the detritiation of [3-3H]glucose without affecting lactate production and fructose 2,6-bisphosphate concentration. Incubation of epididymal fat-pads from fed rats in the presence of antimycin stimulated lactate output but decreased fructose 2,6-bisphosphate concentration. Changes in lipolytic rates brought about by noradrenaline, insulin, adenosine and corticotropin in adipocytes from fed rats were not related to changes in fructose 2,6-bisphosphate or to rates of lactate output. In fed rats, the activity of 6-phosphofructo-2-kinase was not changed after treatment of adipocytes with insulin, noradrenaline or adenosine. It is suggested that the decrease in fructose 2,6-bisphosphate concentration observed after insulin treatment can be explained by the increase in sn-glycerol 3-phosphate, an inhibitor of 6-phosphofructo-2-kinase.  相似文献   

10.
1. Measurements were made of the activities of the four key enzymes involved in gluconeogenesis, pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxylase (EC 4.1.1.32), fructose 1,6-diphosphatase (EC 3.1.3.11) and glucose 6-phosphatase (EC 3.1.3.9), of serine dehydratase (EC 4.2.1.13) and of the four enzymes unique to glycolysis, glucokinase (EC 2.7.1.2), hexokinase (EC 2.7.1.1), phosphofructokinase (EC 2.7.1.11) and pyruvate kinase (EC 2.7.1.40), in livers from starved rats perfused with glucose, fructose or lactate. Changes in perfusate concentrations of glucose, fructose, lactate, pyruvate, urea and amino acid were monitored for each perfusion. 2. Addition of 15mm-glucose at the start of perfusion decreased the activity of pyruvate carboxylase. Constant infusion of glucose to maintain the concentration also decreased the activities of phosphoenolpyruvate carboxylase, fructose 1,6-diphosphatase and serine dehydratase. Addition of 2.2mm-glucose initially to give a perfusate sugar concentration similar to the blood sugar concentration of starved animals had no effect on the activities of the enzymes compared with zero-time controls. 3. Addition of 15mm-fructose initially decreased glucokinase activity. Constant infusion of fructose decreased activities of glucokinase, phosphofructokinase, pyruvate carboxylase, phosphoenolpyruvate carboxylase, glucose 6-phosphatase and serine dehydratase. 4. Addition of 7mm-lactate initially elevated the activity of pyruvate carboxylase, as also did constant infusion; maintenance of a perfusate lactate concentration of 18mm induced both pyruvate carboxylase and phosphoenolpyruvate carboxylase activities. 5. Addition of cycloheximide had no effect on the activities of the enzymes after 4h of perfusion at either low or high concentrations of glucose or at high lactate concentration. Cycloheximide also prevented the loss or induction of pyruvate carboxylase and phosphoenolpyruvate carboxylase activities with high substrate concentrations. 6. Significant amounts of glycogen were deposited in all perfusions, except for those containing cycloheximide at the lowest glucose concentration. Lipid was found to increase only in the experiments with high fructose concentrations. 7. Perfusion with either fructose or glucose decreased the rates of ureogenesis; addition of cycloheximide increased urea efflux from the liver.  相似文献   

11.
The effects of 4 beta-phorbol 12-myristate 13-acetate (PMA), bombesin and insulin on 6-phosphofructo-2-kinase (PFK-2) activity, on fructose 2,6-bisphosphate concentration and on the phosphorylation state of PFK-2 were investigated in primary cultures of hepatocytes from foetal and adult rats. Bombesin stimulated PFK-2 activity and increased hexose phosphate (glucose 6-phosphate and fructose 6-phosphate) and fructose 2,6-bisphosphate content in hepatocytes both in the foetal and adult state. However, PMA-treated foetal cells exhibited a marked stimulation in fructose 2,6-bisphosphate concentration and in PFK-2 activity as well as in the content of hexose phosphates, while no response was found in the case of adult hepatocytes. Moreover, the effect of PMA on foetal hepatocytes was suppressed when cells were incubated with cycloheximide, but not when this effect was elicited by bombesin or insulin. These results, and those obtained on the phosphorylation state of PFK-2, suggest that there are different pathways that modulate fructose 2,6-bisphosphate content and, therefore, the control mechanisms of glycolysis and gluconeogenesis at this regulatory step, both in adult and foetal rat liver.  相似文献   

12.
1. The influences of age and weaning on muscle protein synthesis were studied in vivo, by injecting a large dose of [3H]valine into 1-, 5- and 8-week-old suckling or 8-week-old weaned lambs. 2. The fractional rates of protein synthesis, in red- and white-fibre-type skeletal muscles or striated and smooth visceral muscles, were in 8-week-old suckling animals 24-37% of their values at 1 week of age. This developmental decline was related to decreased capacities for protein synthesis, i.e. RNA/protein ratios. 3. At 8 weeks of age, suckling and weaned lambs had similar fractional synthesis rates, capacities for protein synthesis and efficiencies of protein synthesis (i.e. rates of protein synthesis relative to RNA) in skeletal muscles. 4. In contrast, visceral-muscle fractional synthesis rates were lower in 8-week-old suckling lambs than in weaned animals, owing to decreased efficiencies of protein synthesis. It was concluded that developmental factors and the change to a solid diet, or weaning in itself, or both, affect differently skeletal and visceral muscle protein synthesis in the immature lamb.  相似文献   

13.
Gluconeogenesis from fructose was studied in periportal and pericentral regions of the liver lobule in perfused livers from fasted, phenobarbital-treated rats. When fructose was infused in increasing concentrations from 0.25 to 4 mM, corresponding stepwise increases in glucose formation by the perfused liver were observed as expected. Rates of glucose and lactate production from 4 mM fructose were around 100 and 75 mumol/g/h, respectively. Rates of fructose uptake were around 190 mumol/g/h when 4 mM fructose was infused. 3-Mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, decreased glucose formation from fructose maximally by 20% suggesting that a fraction of the lactate formed from fructose is used for glucose synthesis. A good correlation (r = 0.92) between extra oxygen consumed and glucose produced from fructose was observed. At low fructose concentrations (less than 0.5 mM), the extra oxygen uptake was much greater than could be accounted for by glucose synthesis possibly reflecting fructose 1-phosphate accumulation. Furthermore, fructose diminished ATP/ADP ratios from about 4.0 to 2.0 in periportal and pericentral regions of the liver lobule indicating that the initial phosphorylation of fructose via fructokinase occurs in both regions of the liver lobule. Basal rates of oxygen uptake measured with miniature oxygen electrodes were 2- to 3-fold higher in periportal than in pericentral regions of the liver lobule during perfusions in the anterograde direction. Infusion of fructose increased oxygen uptake by 65 mumol/g/h in periportal areas but had no effect in pericentral regions of the liver lobule indicating higher local rates of gluconeogenesis in hepatocytes located around the portal vein. When perfusion was in the retrograde direction, however, glucose was synthesized nearly exclusively from fructose in upstream, pericentral regions. Thus, gluconeogenesis from fructose is confined to oxygen-rich upstream regions of the liver lobule in the perfused liver.  相似文献   

14.
Isolated liver cells prepared from starved sheep converted palmitate into ketone bodies at twice the rate seen with cells from fed animals. Carnitine stimulated palmitate oxidation only in liver cells from fed sheep, and completely abolished the difference between fed and starved animals in palmitate oxidation. The rates of palmitate oxidation to CO2 and of octanoate oxidation to ketone bodies and CO2 were not affected by starvation or carnitine. Neither starvation nor carnitine altered the ratio of 3-hydroxybutyrate to acetoacetate or the rate of esterification of [1-14C]palmitate. Propionate, lactate, pyruvate and fructose inhibited ketogenesis from palmitate in cells from fed sheep. Starvation or the addition of carnitine decreased the antiketogenic effectiveness of gluconeogenic precursors. Propionate was the most potent inhibitor of ketogenesis, 0.8 mM producing 50% inhibition. Propionate, lactate, fructose and glycerol increased palmitate esterification under all conditions examined. Lactate, pyruvate and fructose stimulated oxidation of palmitate and octanoate to CO2. Starvation and the addition of gluconeogenic precursors stimulated apparent palmitate utilization by cells. Propionate, lactate and pyruvate decreased cellular long-chain acylcarnitine concentrations. Propionate decreased cell contents of CoA and acyl-CoA. It is suggested that propionate may control hepatic ketogenesis by acting at some point in the beta-oxidation sequence. The results are discussed in relation to the differences in the regulation of hepatic fatty acid metabolism between sheep and rats.  相似文献   

15.
Developmental potencies of sheep somatic cells (foetal fibroblasts, FFs) in chimaeric animals were analysed. FFs from pigmented Polish Heatherhead (wrzosowka) breed were microsurgically injected into morulae or blastocysts of white Polish Merino breed (5 cells to each embryo). In one experiment the cells were stained with vital fluorescent dye PKH26, and chimaeric blastocysts were cultured in vitro to confirm the presence of fluorescent cells. In the majority of experiments the blastocysts were transferred to synchronized recipient ewes for development until term. Cultured embryonic cells (CEC), earlier known to produce chimaeras, were injected into blastocysts in control experiments. Seven young were born from FF-injected embryos and three were born from CEC-injected ones. All of them were white, but all three control lambs and three experimental lambs showed small areas of skin pigmentation, which indicated Heatherhead CEC or FF contribution. Tissue samples originating from three germ layers were taken from two FFs-originating presumably chimaeric lambs (male and female) at the age of one month for DNA analysis. The random amplified polymorphic DNA-PCR method supplied two markers of chimaerism, which were amplification products of 643 bp and 615 bp long DNA fragments, found in tissues of experimental lambs as well as in FFs, but not in the blood of parents of blastocysts. The 643 bp marker was found in the majority of tissues of both lambs. The 615 bp amplicon was detected in the skin and lungs of the female lamb and in the hooves of the male lamb. Our data show that foetal fibroblasts introduced to sheep blastocysts can participate in development and can contribute to all tissue lineages up to at least one month of age.  相似文献   

16.
Hepatocytes from overnight-starved rats were incubated with 1-20 mM-fructose, -dihydroxyacetone, -glycerol, -alanine or -lactate and -pyruvate with or without 0.1 microM-glucagon. The production of glucose and lactate was measured, as was the content of fructose 2,6-bisphosphate. The concentrations of fructose (below 5 mM) and dihydroxyacetone (above 1 mM) that gave rise to an increase in fructose 2,6-bisphosphate were those at which a glucagon effect on the production of glucose and lactate could be observed. Glycerol had no effect on fructose 2,6-bisphosphate content or on production of lactate, and glucagon did not stimulate the production of glucose from this precursor. With alanine or lactate/pyruvate as substrates, glucagon stimulated glucose production whether the concentration of fructose 2,6-bisphosphate was increased or not. The extent of inactivation of pyruvate kinase by glucagon was not affected by the presence of the various gluconeogenic precursors. The role of fructose 2,6-bisphosphate in the effect of glucagon on gluconeogenesis from precursors entering the pathway at the level of triose phosphates or pyruvate is discussed.  相似文献   

17.
The rates of recycling and turnover of glucose in 5-day- and 21-day-old lambs and adult sheep were measured by the method of single simultaneous injection of glucose-6-3H and glucose-6-14C. The 3H/14C ratio decreased linearly with time and was 0.58 and 0.60 in lambs of 5-day- and 21-day-old, respectively, and 0.82 in adult sheep at 120 min after injection of the labeled glucose. The pool size and turnover rate of glucose considerably decreased with age. The rate of glucose recycling was significantly higher in lambs of both ages (22.0 and 26.2%, respectively) than in adult sheep (11.1 %).  相似文献   

18.
The objective was to determine ovarian follicular fluid concentrations of glucose, lactate, and pyruvate in relation to follicle size in buffalo and sheep. The effect of varying concentrations of these substances on in vitro oocyte maturation, oocyte protein content, and granulosa and cumulus cell growth was also investigated. Follicular fluid was aspirated from various sizes of follicles (from ovaries without a dominant follicle) collected from adult, cycling nonpregnant buffalo (Bubalus bubalis) and sheep (Ovis aries) during the breeding season. Overall, mean (+/-S.E.M.) concentrations (mM) were glucose 2.42+/-0.31 and 1.40+/-0.22, lactate 7.56+/-2.61 and 10.42+/-1.64, and pyruvate 0.02+/-0.01 and 0.002+/-0.00, in buffalo and sheep, respectively. In both species, as follicles became larger, concentrations of glucose significantly increased, lactate significantly decreased, but pyruvate was not affected. Oocyte maturation was higher (P<0.05) in medium containing supra-physiological concentrations of either glucose (5 mM), or pyruvate (10 mM) alone, or physiological concentrations of glucose, lactate and pyruvate in combination, compared to supra-physiological concentrations of lactate (15 mM) alone, or sub- or supra-physiological concentrations of glucose, lactate and pyruvate in combination (both species). The protein content of oocytes was not significantly affected by the concentration of glucose, lactate, and pyruvate in the maturation medium. However, growth of granulosa and cumulus cells was higher (P<0.05) in medium containing supra-physiological concentrations of glucose (5 mM) alone, or pyruvate (10 mM) alone, or physiological, or supra-physiological concentrations of glucose, lactate and pyruvate in combination, compared to supra-physiological concentrations of lactate (15 mM) alone, or sub-physiological concentrations of glucose, lactate and pyruvate in combination (both species). In conclusion, concentrations of glucose, pyruvate and lactate in the medium had cell type-specific effects on oocyte maturation, and on growth of granulosa and cumulus cells. Furthermore, glucose and pyruvate were the principal energy sources for oocytes and follicular somatic cells in buffalo and sheep.  相似文献   

19.
Fructose 2,6-diphosphate and glucose 1,6-diphosphate concentrations were determined during late gestation and over the course of suckling in rat brain cortex and cerebellum. Cortex fructose 2,6-diphosphate concentration was greatest in neonatal animals and gradually declined thereafter by 25% to reach the adult level at 15 days of age. In contrast, the glucose 1,6-diphosphate concentration increased 4-fold over the same period to reach its highest level by postnatal day 15. Neither cerebellar fructose 2,6-diphosphate nor glucose 1,6-diphosphate concentrations varied significantly. Six day cortex 6-phosphofructo-1-kinase was less sensitive to inhibition by citrate than the enzyme obtained from 15 day pups, and fructose 2,6-diphosphate was better than glucose 1,6-diphosphate at relieving the inhibition imposed by citrate at either age. It is suggested that the rise in cerebral glucose use which occurs during suckling cannot be attributed to either changes in the concentrations of fructose 2,6-diphosphate or glucose 1,6-diphosphate, or the age-related differential sensitivity of 6-phosphofructo-1-kinase toward these effectors.  相似文献   

20.
Plasma hormone and metabolite concentrations have been measured in the plasma of blood collected simultaneously from the femoral artery, umbilical vein and carotid artery of the exteriorized foetal sheep. The concentration of vasopressin and catecholamines was consistently lower and of glucose, lactate and corticosteroids consistently higher in the umbilical vein compared with the femoral artery. ACTH concentrations showed no consistent pattern and fluctuated widely at each site, but during synacthen infusion the concentration in the umbilical vein was consistently lower than in the femoral artery. For corticosteroids the concentration in the carotid artery was much lower than that in the umbilical vein; the converse was true for catecholamines. Concentrations in the carotid and femoral artery were similar for all compounds investigated. These results indicate that the placenta is a major site of vasopressin, catecholamine and ACTH clearance and of glucose, lactate and corticosteroid production. The foetal liver is probably a major site of corticosteroid and catecholamine clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号