首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The chromosomal pepN gene encoding lysyl-aminopeptidase activity in Lactococcus lactis has been identified in a lambda EMBL3 library in Escherichia coli by using an immunological screening with antiserum against a purified aminopeptidase fraction. The pepN gene was localized and subcloned in E. coli on the basis of its expression and hybridization to a mixed-oligonucleotide probe for the previously determine N-terminal amino acid sequence of lysyl-aminopeptidase (P. S. T. Tan and W. N. Konings, Appl. Environ. Microbiol. 56:526-532, 1990). The L. lactis pepN gene appeared to complement an E. coli strain carrying a mutation in its pepN gene. High-level expression of the pepN gene in E. coli was obtained by using the T7 system. The overproduction of the 95-kDa aminopeptidase N could be visualized on sodium dodecyl sulfate-polyacrylamide gels and immunoblots. Cloning of the pepN gene on a multicopy plasmid in L. lactis resulted in a 20-fold increase in lysyl-aminopeptidase activity that corresponded to several percent of total protein. Nucleotide sequence analysis of the 5' region of the pepN gene allowed a comparison between the deduced and determined amino-terminal primary sequences of aminopeptidase N. The results show that the amino terminus of PepN is not processed and does not possess the characteristics of consensus signal sequences, indicating that aminopeptidase N is probably an intracellular protein. The intracellular location of aminopeptidase N in L. lactis was confirmed by immunogold labeling of lactococcal cells.  相似文献   

2.
The chromosomal pepN gene encoding lysyl-aminopeptidase activity in Lactococcus lactis has been identified in a lambda EMBL3 library in Escherichia coli by using an immunological screening with antiserum against a purified aminopeptidase fraction. The pepN gene was localized and subcloned in E. coli on the basis of its expression and hybridization to a mixed-oligonucleotide probe for the previously determine N-terminal amino acid sequence of lysyl-aminopeptidase (P. S. T. Tan and W. N. Konings, Appl. Environ. Microbiol. 56:526-532, 1990). The L. lactis pepN gene appeared to complement an E. coli strain carrying a mutation in its pepN gene. High-level expression of the pepN gene in E. coli was obtained by using the T7 system. The overproduction of the 95-kDa aminopeptidase N could be visualized on sodium dodecyl sulfate-polyacrylamide gels and immunoblots. Cloning of the pepN gene on a multicopy plasmid in L. lactis resulted in a 20-fold increase in lysyl-aminopeptidase activity that corresponded to several percent of total protein. Nucleotide sequence analysis of the 5' region of the pepN gene allowed a comparison between the deduced and determined amino-terminal primary sequences of aminopeptidase N. The results show that the amino terminus of PepN is not processed and does not possess the characteristics of consensus signal sequences, indicating that aminopeptidase N is probably an intracellular protein. The intracellular location of aminopeptidase N in L. lactis was confirmed by immunogold labeling of lactococcal cells.  相似文献   

3.
4.
Lactococcus lactis subsp. lactis NCDO 763 (also designated ML3) possesses an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). X-PDAP mutants were selected by an enzymatic plate assay on the basis of their inability to hydrolyze an L-phenylalanyl-L-proline-beta-naphthylamide substrate. A DNA bank from L. lactis subsp. lactis NCDO 763 was constructed in one of these X-PDAP mutants, and one clone in which the original X-PDAP phenotype was restored was detected by the enzymatic plate assay. The X-PDAP gene, designated pepXP, was further subcloned and sequenced. It codes for a protein containing 763 residues. Comparison of the amino-terminal sequence of the X-PDAP enzyme with the amino acid sequence deduced from the pepXP gene indicated that the enzyme is not subjected to posttranslational modification or exported via processing of a signal peptide. The pepXP gene from L. lactis subsp. lactis NCDO 763 in more than 99% homologous to the pepXP gene from L. lactis subsp. cremoris P8-2-47 described elsewhere (B. Mayo, J. Kok, K. Venema, W. Bockelmann, M. Teuber, H. Reinke, and G. Venema, Appl. Environ. Microbiol. 57:38-44, 1991) and is also conserved in other lactococcal strains.  相似文献   

5.
Lactococcus lactis subsp. lactis NCDO 763 (also designated ML3) possesses an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). X-PDAP mutants were selected by an enzymatic plate assay on the basis of their inability to hydrolyze an L-phenylalanyl-L-proline-beta-naphthylamide substrate. A DNA bank from L. lactis subsp. lactis NCDO 763 was constructed in one of these X-PDAP mutants, and one clone in which the original X-PDAP phenotype was restored was detected by the enzymatic plate assay. The X-PDAP gene, designated pepXP, was further subcloned and sequenced. It codes for a protein containing 763 residues. Comparison of the amino-terminal sequence of the X-PDAP enzyme with the amino acid sequence deduced from the pepXP gene indicated that the enzyme is not subjected to posttranslational modification or exported via processing of a signal peptide. The pepXP gene from L. lactis subsp. lactis NCDO 763 in more than 99% homologous to the pepXP gene from L. lactis subsp. cremoris P8-2-47 described elsewhere (B. Mayo, J. Kok, K. Venema, W. Bockelmann, M. Teuber, H. Reinke, and G. Venema, Appl. Environ. Microbiol. 57:38-44, 1991) and is also conserved in other lactococcal strains.  相似文献   

6.
The general aminopeptidase PepN from Streptococcus thermophilus A was purified to protein homogeneity by hydroxyapatite, anion-exchange, and gel filtration chromatographies. The PepN enzyme was estimated to be a monomer of 95 kDa, with maximal activity on N-Lys-7-amino-4-methylcoumarin at pH 7 and 37 degrees C. It was strongly inhibited by metal chelating agents, suggesting that it is a metallopeptidase. The activity was greatly restored by the bivalent cations Co2+, Zn2+, and Mn2+. Except for proline, glycine, and acidic amino acid residues, PepN has a broad specificity on the N-terminal amino acid of small peptides, but no significant endopeptidase activity has been detected. The N-terminal and short internal amino acid sequences of purified PepN were determined. By using synthetic primers and a battery of PCR techniques, the pepN gene was amplified, subcloned, and further sequenced, revealing an open reading frame of 2,541 nucleotides encoding a protein of 847 amino acids with a molecular weight of 96,252. Amino acid sequence analysis of the pepN gene translation product shows high homology with other PepN enzymes from lactic acid bacteria and exhibits the signature sequence of the zinc metallopeptidase family. The pepN gene was cloned in a T7 promoter-based expression plasmid and the 452-fold overproduced PepN enzyme was purified to homogeneity from the periplasmic extract of the host Escherichia coli strain. The overproduced enzyme showed the same catalytic characteristics as the wild-type enzyme.  相似文献   

7.
8.
For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.  相似文献   

9.
A 97-kDa purified aminopeptidase N (PepN) of Brucella melitensis was previously identified to be immunogenic in humans. The B. melitensis pepN gene was cloned, expressed in Escherichia coli and purified by affinity chromatography. The recombinant PepN (rPepN) exhibited the same biochemical properties, specificity and susceptibility to inhibitors as the native PepN. rPepN was evaluated as a diagnostic antigen in an indirect enzyme-linked immunosorbent assay (ELISA) using sera from patients with acute and chronic brucellosis. The specificity of the ELISA was determined with sera from healthy donors. The ELISA had a cutoff value of 0.156 with 100% specificity and 100% sensitivity. Higher sensitivity was obtained using rPepN compared with crude extract from B. melitensis. Anti-PepN sera did not exhibit serological cross-reaction to crude extracts from Rhizobium tropici, Ochrobactrum anthropi, Yersinia enterocolitica 09 or E. coli O157H7.  相似文献   

10.
A gene coding for an aminopeptidase (PepC) from Lactococcus lactis subsp. cremoris AM2 was cloned by complementation of an Escherichia coli mutant lacking aminopeptidase activity. The nucleotide sequence was determined. A portion of the predicted amino acid sequence of PepC (436 amino acids) showed strong homology to the active site of cysteine proteases. No signal sequence was found, indicating an intracellular location of the enzyme.  相似文献   

11.
The gene from Escherichia coli encoding aminopeptidase N (PepN) was subcloned into pET-26b, and PepN was over-expressed in BL21(DE3) E. coli and purified using Q-Sepharose chromatography. This protocol yielded over 17 mg of purified, recombinant PepN per liter of growth culture under optimum conditions. Gel filtration chromatography revealed that recombinant PepN exists as a monomer. MALDI-TOF mass spectra showed that the enzyme has a molecular mass of 98,750 Da, and steady-state kinetic studies revealed that as-isolated, recombinant PepN exhibits a k(cat) of 354 +/- 11s(-1) and a K(m) of 376 +/- 39 microM when using L-alanine-p-nitroanilide as the substrate. Metal analyses demonstrated that as-isolated, recombinant PepN binds 0.5 and <0.1 equivalents of iron and zinc, respectively. The addition of Zn(II) to recombinant PepN inhibits catalytic activity, while the addition of iron causes a slight decrease or no change in activity. Further metal binding studies revealed that recombinant PepN tightly binds 5 equivalents of iron and <0.1 equivalents of Zn(II). By using this over-expression and purification system, E. coli PepN can now be obtained in quantities necessary for structural characterization and possibly inhibitor design efforts.  相似文献   

12.
Regulation of Proteolytic Enzyme Activity in Lactococcus lactis   总被引:3,自引:1,他引:2       下载免费PDF全文
Two different Lactococcus lactis host strains, L. lactis subsp. lactis MG1363 and L. lactis subsp. cremoris SK1128, both containing plasmid pNZ521, which encodes the extracellular serine proteinase (PrtP) from strain SK110, were used to study the medium and growth-rate-dependent activity of three different enzymes involved in the proteolytic system of lactococci. The activity levels of PrtP and both the intracellular aminopeptidase PepN and the X-prolyl-dipeptidyl aminopeptidase PepXP were studied during batch and continuous cultivation. In both strains, the PrtP activity level was regulated by the peptide content of the medium. The highest activity level was found during growth in milk, and the lowest level was found during growth in the peptide-rich laboratory medium M17. Regulation of the intracellular peptidase activity appeared to be a strain-dependent phenomenon. In cells of strain MG1363, the activity levels of PepN and PepXP were regulated in a similar way to that observed for PrtP. In cells of strain SK1128, the levels of both peptidases were not significantly influenced by the peptide content of the medium. The presence of specific concentrations of the dipeptide prolylleucine could mimic the low activity levels of the regulated proteolytic enzymes, even to the activity level found on M17 medium. The effect of the presence of the dipeptide prolylleucine in the medium on the activity level of the regulated proteolytic enzymes was confirmed at fixed growth rates in chemostat cultures.  相似文献   

13.
【目的】将地衣芽孢杆菌(Bacilluslicheniformis)E7氨肽酶基因pepN克隆到大肠杆菌(Escherichia coli) BL21中,实现氨肽酶Ec PepN的异源表达,研究重组酶的酶学性质及其与碱性蛋白酶协同作用,高效水解大豆蛋白和酪蛋白,产生小分子活性肽和游离氨基酸。【方法】以地衣芽孢杆菌E7基因组DNA为模板,将氨肽酶基因pepN克隆到载体pET28a中,构建重组表达载体pET28-pepN,转化到大肠杆菌BL21感受态细胞中,经DNA测序验证,获得重组菌E. coli BL21/pET28-pepN。利用镍离子亲和层析柱对重组酶进行分离纯化,研究纯酶的pH和温度稳定性、半衰期和NaCl的耐受性等酶学性质。以商品化氨肽酶与碱性蛋白酶协同作用为对照,重组酶Ec PepN与碱性蛋白酶协同水解大豆蛋白和酪蛋白,测定水解产物中小分子活性肽和游离氨基酸的组成。【结果】Ec PepN在大肠杆菌BL21中可溶性表达,SDS-PAGE分析表明纯化的重组酶在52kDa左右显示单一条带。在7种测定底物中,Ec PepN的最适底物为Ala-pNA。在最适条件(pH 9.0和50°C...  相似文献   

14.
Vibrio fischeri cells are the sole colonists of a specialized light organ in the mantle cavity of the sepiolid squid Euprymna scolopes. The process begins when the bacteria aggregate in mucus secretions outside the light organ. The cells eventually leave the aggregate, enter the light organ, and encounter a rich supply of peptides. The need to dissociate from mucus and presumably utilize peptides led us to hypothesize that protease activity is integral to the colonization process. Protease activity associated with whole cells of Vibrio fischeri strain ES114 was identified as the product of a putative cell membrane-associated aminopeptidase (PepN). To characterize this activity, the aminopeptidase was cloned, overexpressed, and purified. Initial steady-state kinetic studies revealed that the aminopeptidase has broad activity, with a preference for basic and hydrophobic side chains and k(cat) and K(m) values that are lower and smaller, respectively, than those of Escherichia coli PepN. A V. fischeri mutant unable to produce PepN is significantly delayed in its ability to colonize squid within the first 12 h, but eventually it establishes a wild-type colonization level. Likewise, in competition with the wild type for colonization, the mutant is outcompeted at 12 h postinoculation but then competes evenly by 24 h. Also, the PepN-deficient strain fails to achieve wild-type levels of cells in aggregates, suggesting an explanation for the initial colonization delay. This study provides a foundation for more studies on PepN expression, localization, and role in the early stages of squid colonization.  相似文献   

15.
In an effort to prepare novel inhibitors of bacterial aminopeptidase N (PepN), the phosphinate, propenylphosphinate, decylphosphinate, sulfonate, and sulfonamidate analogs of Ala-Ala were synthesized and tested as inhibitors. Phosphinate 1 was shown to inhibit PepN with a K(i) of 10microM, and propenylphosphinate 2 and decylphosphinate 3 inhibited PepN with a K(i) of ca. 1microM. Sulfonate and sulfonamidate analogs did not inhibit PepN.  相似文献   

16.
We have cloned and characterized a human brain cDNA encoding a new metalloprotease that has been called aminopeptidase O (AP-O). AP-O exhibits a series of structural features characteristic of aminopeptidases, including a conserved catalytic domain with a zinc-binding site (HEXXHX18E) that allows its classification in the M1 family of metallopeptidases or gluzincins. The structural complexity of AP-O is further increased by the presence of an additional C-terminal domain 170 residues long, which is predicted to have an ARM repeat fold originally identified in the Drosophila segment polarity gene product Armadillo. This ARM repeat domain is also present in aminopeptidase B, aminopeptidase B-like, and leukotriene A4 hydrolase and defines a novel subfamily of aminopeptidases that we have called ARM aminopeptidases. Northern blot analysis revealed that AP-O is mainly expressed in the pancreas, placenta, liver, testis, and heart. Human AP-O was produced in Escherichia coli, and the purified recombinant protein hydrolyzed synthetic substrates used for assaying aminopeptidase activity. This activity was abolished by general inhibitors of metalloproteases and specific inhibitors of aminopeptidases. Recombinant AP-O also cleaved angiotensin III to generate angiotensin IV, a bioactive peptide of the renin-angiotensin pathway with multiple actions on diverse tissues, including brain, testis, and heart. On the basis of these results we suggest that AP-O could play a role in the proteolytic processing of bioactive peptides in those tissues where it is expressed.  相似文献   

17.
In the current study, we report the cloning and initial characterization of a novel human cytosolic aminopeptidase named adipocyte-derived leucine aminopeptidase (A-LAP). The sequence encodes a 941-amino acid protein with significant homology (43%) to placental leucine aminopeptidase (P-LAP)/oxytocinase. The predicted A-LAP contains the HEXXH(X)18E consensus sequence, which is characteristic of the M1 family of zinc-metallopeptidases. Although the deduced sequence contains a hydrophobic region near the N-terminus, the enzyme localized mainly in cytoplasm when expressed in COS-7 cells. Northern blot analysis revealed that A-LAP was expressed in all the tissues tested, some of which expressed at least three forms of mRNA, suggesting that the regulation of the gene expression is complex. When aminopeptidase activity of A-LAP was measured with various synthetic substrates, the enzyme revealed a preference for leucine, establishing that A-LAP is a novel leucine aminopeptidase with restricted substrate specificity. The identification of A-LAP, which reveals strong homology to P-LAP, might lead to the definition of a new subfamily of zinc-containing aminopeptidases belonging to the M1 family of metallopeptidases.  相似文献   

18.
Streptococcus salivarius methionine aminopeptidase (MetAP) was purified from a recombinant Escherichia coli strain containing the S. salivarius map gene, which codes for MetAP. S. salivarius map coded for a protein of 286 amino acids with a calculated molecular mass of 31,723 Da and a pI of 4.6. The native enzyme eluted from a Superdex column as a protein with a molecular mass of 30.6 kDa and cleaved N-terminal Met of peptide only when the penultimate amino acid was Gly, Ala, Ser, Val, Pro, or Thr. The enzyme was more active against tetrapeptides than tripeptides and did not recognize dipeptides. It required the presence of a metal cation for activity, with a preference for Co(2+) over Mn(2+). S. salivarius MetAP has a pH optimum of 8.0 and an optimal temperature at 50 degrees C. The S. salivarius protein had an extra sequence of 24 amino acids between two conserved aspartate residues involved in the coordination of the metal ion. A similar extra sequence is present in MetAP from other streptococci and from Lactococcus lactis, but not from other bacteria or eukaryotes.  相似文献   

19.
20.
The crystal structure of a cold-active aminopeptidase (ColAP) from Colwellia psychrerythraea strain 34H has been determined, extending the number of crystal structures of the M1 metallopeptidase family to four among the 436 members currently identified. In agreement with their sequence similarity, the overall structure of ColAP displayed a high correspondence with leukotriene A4 hydrolase (LTA4H), a human bifunctional enzyme that converts leukotriene A4 (LTA4) in the potent chemoattractant leukotriene B4. Indeed, both enzymes are composed of three domains, an N-terminal saddle-like domain, a catalytic thermolysin-like domain, and a less conserved C-terminal alpha-helical flat spiral domain. Together, these domains form a deep cavity harboring the zinc binding site formed by residues included in the conserved HEXXHX(18)H motif. A detailed structural comparison of these enzymes revealed several plausible determinants of ColAP cold adaptation. The main differences involve specific amino acid substitutions, loop content and solvent exposure, complexity and distribution of ion pairs, and differential domain flexibilities. Such elements may act synergistically to allow conformational flexibility needed for an efficient catalysis in cold environments. Furthermore, the region of ColAP corresponding to the aminopeptidase active site of LTA4H is much more conserved than the suggested LTA4 substrate binding region. This observation supports the hypothesis that this region of the LTA4H active site has evolved in order to fit the lipidic substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号