首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
DNA helicase II, the product of the uvrD gene, has been implicated in DNA repair, replication, and recombination. Because the phenotypes of individual uvrD alleles vary significantly, we constructed deletion-insertion mutations in the uvrD gene to determine the phenotype of cells lacking DNA helicase II. Deletion mutants completely lacking the protein, as well as one which contains a truncated protein retaining the ATP-binding site, remained viable. However, they were sensitive to UV light and exhibited elevated levels of homologous recombination and spontaneous mutagenesis. In addition, mutations mapping in or near rep which allow construction of rep uvrD double mutants at a high frequency were isolated.  相似文献   

3.
Hrq1 helicase is a novel member of the RecQ family. Among the five human RecQ helicases, Hrq1 is most homologous to RECQL4 and is conserved in fungal genomes. Recent genetic and biochemical studies have shown that it is a functional gene, involved in the maintenance of genome stability. To better define the roles of Hrq1 in yeast cells, we investigated genetic interactions between HRQ1 and several DNA repair genes. Based on DNA damage sensitivities induced by 4-nitroquinoline-1-oxide (4-NQO) or cisplatin, RAD4 was found to be epistatic to HRQ1. On the other hand, mutant strains defective in either homologous recombination (HR) or post-replication repair (PRR) became more sensitive by additional deletion of HRQ1, indicating that HRQ1 functions in the RAD4-dependent nucleotide excision repair (NER) pathway independent of HR or PRR. In support of this, yeast two-hybrid analysis showed that Hrq1 interacted with Rad4, which was enhanced by DNA damage. Overexpression of Hrq1K318A helicase-deficient protein rendered mutant cells more sensitive to 4-NQO and cisplatin, suggesting that helicase activity is required for the proper function of Hrq1 in NER.  相似文献   

4.
Cells deficient in the Werner syndrome protein (WRN) or BRCA1 are hypersensitive to DNA interstrand cross-links (ICLs), whose repair requires nucleotide excision repair (NER) and homologous recombination (HR). However, the roles of WRN and BRCA1 in the repair of DNA ICLs are not understood and the molecular mechanisms of ICL repair at the processing stage have not yet been established. This study demonstrates that WRN helicase activity, but not exonuclease activity, is required to process DNA ICLs in cells and that WRN cooperates with BRCA1 in the cellular response to DNA ICLs. BRCA1 interacts directly with WRN and stimulates WRN helicase and exonuclease activities in vitro. The interaction between WRN and BRCA1 increases in cells treated with DNA cross-linking agents. WRN binding to BRCA1 was mapped to BRCA1 452–1079 amino acids. The BRCA1/BARD1 complex also associates with WRN in vivo and stimulates WRN helicase activity on forked and Holliday junction substrates. These findings suggest that WRN and BRCA1 act in a coordinated manner to facilitate repair of DNA ICLs.  相似文献   

5.
UvrD is an SF1 family helicase involved in DNA repair that is widely conserved in bacteria. Mycobacterium tuberculosis has two annotated UvrD homologues; here we investigate the role of UvrD2. The uvrD2 gene at its native locus could be knocked out only in the presence of a second copy of the gene, demonstrating that uvrD2 is essential. Analysis of the putative protein domain structure of UvrD2 shows a distinctive domain architecture, with an extended C terminus containing an HRDC domain normally found in SF2 family helicases and a linking domain carrying a tetracysteine motif. Truncated constructs lacking the C-terminal domains of UvrD2 were able to compensate for the loss of the chromosomal copy, showing that these C-terminal domains are not essential. Although UvrD2 is a functional helicase, a mutant form of the protein lacking helicase activity was able to permit deletion of uvrD2 at its native locus. However, a mutant protein unable to hydrolyze ATP or translocate along DNA was not able to compensate for lack of the wild-type protein. Therefore, we concluded that the essential role played by UvrD2 is unlikely to involve its DNA unwinding activity and is more likely to involve DNA translocation and, possibly, protein displacement.  相似文献   

6.
7.
8.
9.

Background

Sequenced archaeal genomes contain a variety of bacterial and eukaryotic DNA repair gene homologs, but relatively little is known about how these microorganisms actually perform DNA repair. At least some archaea, including the extreme halophile Halobacterium sp. NRC-1, are able to repair ultraviolet light (UV) induced DNA damage in the absence of light-dependent photoreactivation but this 'dark' repair capacity remains largely uncharacterized. Halobacterium sp. NRC-1 possesses homologs of the bacterial uvrA, uvrB, and uvrC nucleotide excision repair genes as well as several eukaryotic repair genes and it has been thought that multiple DNA repair pathways may account for the high UV resistance and dark repair capacity of this model halophilic archaeon. We have carried out a functional analysis, measuring repair capability in uvrA, uvrB and uvrC deletion mutants.

Results

Deletion mutants lacking functional uvrA, uvrB or uvrC genes, including a uvrA uvrC double mutant, are hypersensitive to UV and are unable to remove cyclobutane pyrimidine dimers or 6–4 photoproducts from their DNA after irradiation with 150 J/m2 of 254 nm UV-C. The UV sensitivity of the uvr mutants is greatly attenuated following incubation under visible light, emphasizing that photoreactivation is highly efficient in this organism. Phylogenetic analysis of the Halobacterium uvr genes indicates a complex ancestry.

Conclusion

Our results demonstrate that homologs of the bacterial nucleotide excision repair genes uvrA, uvrB, and uvrC are required for the removal of UV damage in the absence of photoreactivating light in Halobacterium sp. NRC-1. Deletion of these genes renders cells hypersensitive to UV and abolishes their ability to remove cyclobutane pyrimidine dimers and 6–4 photoproducts in the absence of photoreactivating light. In spite of this inability to repair UV damaged DNA, uvrA, uvrB and uvrC deletion mutants are substantially less UV sensitive than excision repair mutants of E. coli or yeast. This may be due to efficient damage tolerance mechanisms such as recombinational lesion bypass, bypass DNA polymerase(s) and the existence of multiple genomes in Halobacterium. Phylogenetic analysis provides no clear evidence for lateral transfer of these genes from bacteria to archaea.  相似文献   

10.
11.
Some phages survive irradiation much better upon multiple than upon single infection, a phenomenon known as multiplicity reactivation (MR). Long ago MR of UV-irradiated lambda red phage in E. coli cells was shown to be a manifestation of recA-dependent recombinational DNA repair. We used this experimental model to assess the influence of helicase II on the type of recombinational repair responsible for MR. Since helicase II is encoded by the SOS-inducible uvrD gene, SOS-inducing treatments such as irradiating recA(+) or heating recA441 cells were used. We found: i) that MR was abolished by the SOS-inducing treatments; ii) that in uvrD background these treatments did not affect MR; and iii) that the presence of a high-copy plasmid vector carrying the uvrD(+) allele together with its natural promoter region was sufficient to block MR. From these results we infer that helicase II is able to antagonize the type of recA-dependent recombinational repair acting on multiple copies of UV-damaged lambda DNA and that its anti-recombinogenic activity is operative at elevated levels only.  相似文献   

12.
13.
14.
The incorporation of ribonucleotides in DNA has attracted considerable notice in recent years, since the pool of ribonucleotides can exceed that of the deoxyribonucleotides by at least 10–20-fold, and single ribonucleotide incorporation by DNA polymerases appears to be a common event. Moreover ribonucleotides are potentially mutagenic and lead to genome instability. As a consequence, errantly incorporated ribonucleotides are rapidly repaired in a process dependent upon RNase H enzymes. On the other hand, global genomic nucleotide excision repair (NER) in prokaryotes and eukaryotes removes damage caused by covalent modifications that typically distort and destabilize DNA through the production of lesions derived from bulky chemical carcinogens, such as polycyclic aromatic hydrocarbon metabolites, or via crosslinking. However, a recent study challenges this lesion-recognition paradigm. The work of Vaisman et al. (2013) [34] reveals that even a single ribonucleotide embedded in a deoxyribonucleotide duplex is recognized by the bacterial NER machinery in vitro. In their report, the authors show that spontaneous mutagenesis promoted by a steric-gate pol V mutant increases in uvrA, uvrB, or uvrC strains lacking rnhB (encoding RNase HII) and to a greater extent in an NER-deficient strain lacking both RNase HI and RNase HII. Using purified UvrA, UvrB, and UvrC proteins in in vitro assays they show that despite causing little distortion, a single ribonucleotide embedded in a DNA duplex is recognized and doubly-incised by the NER complex. We present the hypothesis to explain the recognition and/or verification of this small lesion, that the critical 2′-OH of the ribonucleotide – with its unique electrostatic and hydrogen bonding properties – may act as a signal through interactions with amino acid residues of the prokaryotic NER complex that are not possible with DNA. Such a mechanism might also be relevant if it were demonstrated that the eukaryotic NER machinery likewise incises an embedded ribonucleotide in DNA.  相似文献   

15.
The expression of theSRS2 gene, which encodes a DNA helicase involved in DNA repair inSaccharomyces cerevisiae, was studied using anSRS2-lacZ fusion integrated at the chromosomalSRS2 locus. It is shown here that this gene is expressed at a low level and is tightly regulated. It is cell-cycle regulated, with induction probably being coordinated with that of the DNA-synthesis genes, which are transcribed at the G1-S boundary. It is also induced by DNA-damaging agents, but only during the G2 phase of the cell cycle; this distinguishes it from a number of other repair genes, which are inducible throughout the cycle. During meiosis, the expression ofSRS2 rises at a time nearly coincident with commitment to recombination. Sincesrs2 null mutants are radiation sensitive essentially when treated in G1, the mitotic regulation pattern described here leads us to postulate that either secondary regulatory events limit Srs2 activity to G1 cells or Srs2 functions in a repair mechanism associated with replication.  相似文献   

16.
The persistence of Porphyromonas gingivalis in the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. DNA damage is a major consequence of oxidative stress. Unlike the case for other organisms, our previous report suggests a role for a non-base excision repair mechanism for the removal of 8-oxo-7,8-dihydroguanine (8-oxo-G) in P. gingivalis. Because the uvrB gene is known to be important in nucleotide excision repair, the role of this gene in the repair of oxidative stress-induced DNA damage was investigated. A 3.1-kb fragment containing the uvrB gene was PCR amplified from the chromosomal DNA of P. gingivalis W83. This gene was insertionally inactivated using the ermF-ermAM antibiotic cassette and used to create a uvrB-deficient mutant by allelic exchange. When plated on brucella blood agar, the mutant strain, designated P. gingivalis FLL144, was similar in black pigmentation and beta-hemolysis to the parent strain. In addition, P. gingivalis FLL144 demonstrated no significant difference in growth rate, proteolytic activity, or sensitivity to hydrogen peroxide from that of the parent strain. However, in contrast to the wild type, P. gingivalis FLL144 was significantly sensitive to UV irradiation. The enzymatic removal of 8-oxo-G from duplex DNA was unaffected by the inactivation of the uvrB gene. DNA affinity fractionation identified unique proteins that preferentially bound to the oligonucleotide fragment carrying the 8-oxo-G lesion. Collectively, these results suggest that the repair of oxidative stress-induced DNA damage involving 8-oxo-G may occur by a still undescribed mechanism in P. gingivalis.  相似文献   

17.
Mycobacterial UvrD2 is a DNA-dependent ATPase with 3' to 5' helicase activity. UvrD2 is an atypical helicase, insofar as its N-terminal ATPase domain resembles the superfamily I helicases UvrD/PcrA, yet it has a C-terminal HRDC domain, which is a feature of RecQ-type superfamily II helicases. The ATPase and HRDC domains are connected by a CxxC-(14)-CxxC tetracysteine module that defines a new clade of UvrD2-like bacterial helicases found only in Actinomycetales. By characterizing truncated versions of Mycobacterium smegmatis UvrD2, we show that whereas the HRDC domain is not required for ATPase or helicase activities in vitro, deletion of the tetracysteine module abolishes duplex unwinding while preserving ATP hydrolysis. Replacing each of the CxxC motifs with a double-alanine variant AxxA had no effect on duplex unwinding, signifying that the domain module, not the cysteines, is crucial for function. The helicase activity of a truncated UvrD2 lacking the tetracysteine and HRDC domains was restored by the DNA-binding protein Ku, a component of the mycobacterial NHEJ system and a cofactor for DNA unwinding by the paralogous mycobacterial helicase UvrD1. Our findings indicate that coupling of ATP hydrolysis to duplex unwinding can be achieved by protein domains acting in cis or trans. Attempts to disrupt the M. smegmatis uvrD2 gene were unsuccessful unless a second copy of uvrD2 was present elsewhere in the chromosome, indicating that UvrD2 is essential for growth of M. smegmatis.  相似文献   

18.
19.
Helicase II (uvrD gene product) and helicase IV (helD gene product) have been shown previously to be involved in the RecF pathway of recombination. To better understand the role of these two proteins in homologous recombination in the RecF pathway [recBCsbcB(C) background], we investigated the interactions between helD, uvrD and the following RecF pathway genes: recF, recO, recN and ruvAB. We observed synergistic interactions between uvrD and the recF, recN, recO and recG genes in both conjugational recombination and the repair of methylmethane sulfonate (MMS)-induced DNA damage. No synergistic interactions were detected between helD and the recF, recO and recN genes when conjugational recombination was analyzed. We did, however, detect synergistic interactions between helD and recF/recO in recombinational repair. Suprisingly, the uvrD deletion completely suppressed the phenotype of a ruvB mutation in a recBCsbcB(C) background. Both conjugational recombination efficiency and MMS-damaged DNA repair proficiency returned to wild-type levels in the δuvrDruvB9 double mutant. Suppression of the effects of the ruvB mutation by a uvrD deletion was dependent on the recG and recN genes and not dependent on the recF/O/R genes. These data are discussed in the context of two ``RecF' homologous recombination pathways operating in a recBCsbcB(C) strain background.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号