首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The effect of beta-adrenergic blockade on the drift in O2 consumption (VO2 drift) typically observed during prolonged constant-rate exercise was studied in 14 healthy males in moderate heat at 40% of maximal O2 consumption (VO2max). After an initial maximum cycle ergometer test to determine the subjects' control VO2max, subjects were administered each of three medications: placebo, atenolol (100 mg once daily), and propranolol (80 mg twice daily), in a randomized double-blind fashion. Each medication period was 5 days in length and was followed by a 4-day washout period. On the 3rd day of each medication period, subjects performed a maximal cycle ergometer test. On the final day of each medication period, subjects exercised at 40% of their control VO2max for 90 min on a cycle ergometer in a warm (31.7 +/- 0.3 degrees C) moderately humid (44.7 +/- 4.7%) environment. beta-Blockade caused significant (P less than 0.05) reductions in VO2max, maximal minute ventilation (VEmax), maximal heart rate (HRmax), and maximal exercise time. Significantly greater decreases in VO2max, VEmax, and HRmax were associated with the propranolol compared with the atenolol treatment. During the 90-min submaximal rides, beta-blockade significantly reduced heart rate. Substantially lower values for O2 consumption (VO2) and minute ventilation (VE) were observed with propranolol compared with atenolol or placebo. Furthermore, VO2 drift and HR drift were observed under atenolol and placebo conditions but not with propranolol. Respiratory exchange ratio decreased significantly over time during the placebo and atenolol trials but did not change during the propranolol trial.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
Male subjects (n = 8) cycled for 90 min in 5, 20, and 30 degrees C environments. Rectal (Tre), chest, and thigh temperatures, O2 consumption (VO2), respiratory exchange ratio (R), and venous concentrations of glucose, free fatty acids (FFA), urea N, lactic acid (LA), norepinephrine (NE), epinephrine (E), and cortisol (C) were measured before, during, and after exercise. Urea N excretion was measured in 72 h of nonexercise, in 72 h of exercise (exercise day + 2 post-exercise days) urine samples, and in exercise sweat. Calculated 72-h protein utilization (means +/- SE) was significantly greater (P less than 0.05) for the 5 (86.9 +/- 27.1 g) and 20 (82.9 +/- 22.7 g) compared with 30 degrees C (34.01 +/- 19.1 g) trial. Regardless of ambient temperature exercise increased the venous concentration of C, E, and NE. These catabolic hormones were greatest in 5, lowest in 20, and intermediate in 30 degrees C. Exercise Tre and VO2 were greatest in the 30 degrees C environment. Venous FFA concentration was significantly higher and R significantly lower in 5 vs. 20 or 30 degrees C, and venous LA concentration was significantly greater in 30 vs. 20 or 5 degrees C. Although these results indicate that exercise protein breakdown is affected by ambient temperatures, the mechanism of action is not due solely to circulating NE, E, and C. Differences in venous FFA and LA across environmental temperatures suggest that alterations in carbohydrate and fat metabolism may have contributed to the observed variable protein utilization.  相似文献   

5.
The production of reactive oxygen species in skeletal muscle is linked with muscle fatigue. This study investigated whether the antioxidant compound N-acetylcysteine (NAC) augments time to fatigue during prolonged, submaximal cycling exercise. Seven men completed a double-blind, crossover study, receiving NAC or placebo before and during cycling exercise, comprising 45 min at 70% of peak oxygen consumption (Vo2 peak) and then to fatigue at 90% Vo2 peak. NAC was intravenously infused at 125 mg.kg-1.h-1 for 15 min and then 25 mg.kg-1.h-1 for 20 min before and throughout exercise, which was continued until fatigue. Arterialized venous blood was analyzed for NAC concentration, hematology, and plasma electrolytes. NAC induced no serious adverse reactions and did not affect hematology, acid-base status, or plasma electrolytes. Time to fatigue was reproducible in preliminary trials (coefficient of variation 7.4 +/- 1.2%) and was not augmented by NAC (NAC 14.6 +/- 4.5 min; control 12.8 +/- 5.4 min). However, time to fatigue during NAC trials was correlated with Vo2 peak (r = 0.78; P < 0.05), suggesting that NAC effects on performance may be dependent on training status. The rise in plasma K+ concentration at fatigue was attenuated by NAC (P < 0.05). The ratio of rise in K+ concentration to work and the percentage change in time to fatigue tended to be inversely related (r = -0.71; P < 0.07). Further research is required to clarify a possible training status-dependent effect of NAC on muscle performance and K+ regulation.  相似文献   

6.
7.
The purpose of this investigation was to measure expired air temperature under cool- and hot-humid environmental conditions at rest and during prolonged exercise to: (1) establish if significant increases in body core temperature affected expired air temperature, and (2) to determine if the temperature setting for heating the pneumotachometer in an open-circuit system requires adjustment during prolonged exercise tests to account for changes in expired air temperature. Six male distance runners completed two tests in cool-humid [dry bulb temperature (T db) 15.5 (SD 1.3)°C, wet bulb temperature (T wb) 12.1 (SD 1.4)°C] and hot-humid [T db 31.6 (SD 0.6)°C, T wb 24.9 (SD 0.6)°C, black globe temperature (T g) 34.3 (SD 0.3)°C] environments, running at a velocity corresponding to 65% [67.1 (SD 2.82)%] of their maximal oxygen uptake. Rectal temperature and expired air temperatures were compared at rest, and after 30 min and 60 min of exercise for each environment. The main finding of this investigation was a significant (P < 0.05) but small increase in expired air temperature between the 30-min and 60-min measures in the hot-humid environment. No significant differences in expired air temperature were found between the 30-min and 60-min measures in the cool-humid environment. These findings suggest that: (1) expired air temperature is influenced by elevations in body core temperature during prolonged exercise in hot-humid conditions, and (2) that the temperature setting for heating the head of the pneumotachometer (after determining the appropriate temperature through measuring expired air temperature for the set environmental condition) may require adjustment during prolonged exercise trials in hot-humid environmental conditions. Accepted: 27 February 1997  相似文献   

8.
9.
10.
11.
[Purpose]We determined the effect of partial sleep deprivation (PSD) after an exercise session on exercise performance on the following morning.[Methods]Eleven male athletes performed either a normal sleep trial (CON) or a PSD trial. On the first day (day 1), all subjects performed an exercise session consisting of 90 min of running (at 75% V˙O2max) followed by 100 drop jumps. Maximal strength (MVC) was evaluated before and after exercise. In the CON trial, the sleep duration was 23:00–7:00, while in the PSD trial, the sleep duration was shortened to 40% of the regular sleep duration. On the following morning (day 2), MVC, the metabolic responses during 20 min of running (at 75% V˙O2max), and time to exhaustion (TTE) at 85% V˙O2max were evaluated.[Results]On day 2, neither the MVC nor  V˙O2 during 20 min of running differed significantly between the two trials. However, the respiratory exchange ratio was significantly lower in the PSD trial than in the CON trial (p = 0.01). Moreover, the TTE was significantly shorter in the PSD trial than in the CON trial (p = 0.01).[Conclusion]A single night of PSD after an exercise session significantly decreased endurance performance without significantly changing muscle strength or cardiopulmonary response.  相似文献   

12.
We examined whether an increase in skin temperature or the rate of increase in core body temperature influences the relationship between minute ventilation (Ve) and core temperature during prolonged exercise in the heat. Thirteen subjects exercised for 60 min on a cycle ergometer at 50% of peak oxygen uptake while wearing a suit perfused with water at 10 degrees C (T10), 35 degrees C (T35), or 45 degrees C (T45). During the exercise, esophageal temperature (Tes), skin temperature, heart rate (HR), Ve, tidal volume, respiratory frequency (f), respiratory gases, blood pressure (BP), and blood lactate were all measured. We found that oxygen uptake, carbon dioxide output, BP, and blood lactate did not differ among the sessions. Tes, HR, Ve, and f remained nearly constant from minute 10 onward in the T10 session, but all of these parameters progressively increased in the T35 and T45 sessions, and significantly higher levels were seen in the T45 than the T35 session. For all but two subjects in the T35 and T45 sessions, plotting Ve as a function of Tes revealed no threshold for hyperventilation; instead, increases in Ve were linearly related to Tes, and there were no significant differences in the slopes or intercepts between the T35 and T45 sessions. Thus, during prolonged submaximal exercise in the heat, Ve increases with core temperature, and the influences of skin temperature and the rate of increase in Tes on the relationship between Ve and Tes are apparently small.  相似文献   

13.
This paper describes first the dynamics of heat transfer from active muscle to the body core and then the physiological regulatory mechanisms that act to modify the rates of heat transfer from core to skin and from skin to environment. After this, nonthermal factors influencing the regulatory mechanisms are described, emphasizing the importance of body fluid status and its influence on the temperature regulatory mechanisms. The control of cutaneous vasomotor and venomotor tone is the shared effector loop of both the blood pressure and temperature regulatory systems; during exercise these systems interact, with the former system predominating when mutually exclusive demands exist. The importance of blood volume is emphasized again in a final discussion of the effects of improved physical condition on the temperature regulatory system.  相似文献   

14.
15.
16.
17.
BACKGROUND: The effect of prolonged strenuous exercise (PSE) on left ventricular (LV) systolic function has not been well studied in younger female triathletes. This study examined LV systolic function prior to, during and immediately following PSE (i.e., 40 km bicycle time trial followed by a 10 km run) in 13 younger (29 PlusMinus; 6 years) female triathletes. METHODS: Two-dimensional echocardiographic images were obtained prior to, at 30-minute intervals during and immediately following PSE. Heart rate, systolic blood pressure, end-diastolic and end-systolic cavity areas were measured at each time point. Echocardiographic and hemodynamic measures were also combined to obtain LV end-systolic wall stress and myocardial contractility (i.e., systolic blood pressure - end-systolic cavity area relation). RESULTS: Subjects exercised at an intensity equivalent to 90 PlusMinus; 3% of maximal heart rate. Heart rate, systolic blood pressure, systolic blood pressure - end-systolic cavity area relation and fractional area change increased while end-diastolic and end-systolic cavity areas decreased during exertion. CONCLUSIONS: PSE is associated with enhanced LV systolic function secondary to an increase in myocardial contractility in younger female triathletes.  相似文献   

18.
Timothy Noakes 《Journal of applied physiology》2004,96(3):1243; author reply 1243-1243; author reply 1244
  相似文献   

19.
20.
The relationship between two abnormalities of exercise physiology in chronic heart failure patients was investigated: chronotropic incompetence and decrease in core temperature. While at rest, 13 heart failure patients had an average sinus heart rate that was significantly higher than seven normals (92 +/- 13 vs. 82 +/- 10 min-1, P less than 0.05). However, during exercise, the trend of increase in sinus heart rate as a function of work load and O2 uptake was significantly greater in normals compared with heart failure (P less than 0.05), and the absolute increase in heart rate at 50 W of cycle ergometry was larger in normals compared with heart failure (38 +/- 17 vs. 22 +/- 13 min-1, P less than 0.05). Differences in core temperature regulation were also observed. In the normals, core temperature increased from 37.13 +/- 0.33 degrees C at rest to 37.37 +/- 0.31 degrees C at 50 W of exercise (P less than 0.01). In the heart failure patients, core temperature decreased from 36.99 +/- 0.33 degrees C at rest to 36.66 +/- 0.39 degrees C at 50 W of exercise (P less than 0.01). As expected, significant differences in hemodynamic and gas exchange variables were observed between the normals and the heart failure patients both at rest and during exercise. A multiple linear regression analysis was performed of heart rate changes as the dependent variable and thermoregulatory and hemodynamic changes as the independent variables to test for their influence on heart rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号