首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas sp. strain KC was grown on a medium with a low content of transition metals in order to examine the conditions for carbon tetrachloride (CT) transformation. Several carbon sources, including acetate, glucose, glycerol, and glutamate, were able to support CT transformation. The chelators 2,2'-dipyridyl and 1,10-phenanthroline stimulated CT transformation in a rich medium that otherwise did not support this activity. Low (< 10 microM) additions of dissolved iron(II), iron(III), and cobalt(II), as well as an insoluble iron(III) compound, ferric oxyhydroxide, inhibited CT transformation. The addition of 50 microM iron to actively growing cultures resulted in delayed inhibition of CT transformation. CT transformation was seen in aerobic cultures of KC, but with reduced efficiency compared with denitrifying cultures. Inhibition of CT transformation by iron was also seen in aerobically grown cultures. Optimal conditions were used in searching for effective CT transformation activity among denitrifying enrichments grown from samples of aquifer material. No activity comparable to that of Pseudomonas sp. strain KC was found among 16 samples tested.  相似文献   

2.
A denitrifying Pseudomonas sp. (strain KC) capable of transforming carbon tetrachloride (CT) was isolated from groundwater aquifer solids. Major products of the transformation of 14C-labeled CT by Pseudomonas strain KC under denitrification conditions were 14CO2 and an unidentified water-soluble fraction. Little or no chloroform was produced. Addition of dissolved trace metals, notably, ferrous iron and cobalt, to the growth medium appeared to enhance growth of Pseudomonas strain KC while inhibiting transformation of CT. It is hypothesized that transformation of CT by this organism is associated with the mechanism of trace-metal scavenging.  相似文献   

3.
A denitrifying Pseudomonas sp. (strain KC) capable of transforming carbon tetrachloride (CT) was isolated from groundwater aquifer solids. Major products of the transformation of 14C-labeled CT by Pseudomonas strain KC under denitrification conditions were 14CO2 and an unidentified water-soluble fraction. Little or no chloroform was produced. Addition of dissolved trace metals, notably, ferrous iron and cobalt, to the growth medium appeared to enhance growth of Pseudomonas strain KC while inhibiting transformation of CT. It is hypothesized that transformation of CT by this organism is associated with the mechanism of trace-metal scavenging.  相似文献   

4.
Previous research has established that Pseudomonas sp. strain KC rapidly transforms carbon tetrachloride (CT) to carbon dioxide (45 to 55%), a nonvolatile fraction (45 to 55%), and a cell-associated fraction ((equiv)5%) under denitrifying, iron-limited conditions. The present study provides additional characterization of the nonvolatile fraction, demonstrates that electron transfer plays a role in the transformation, and establishes the importance of both extracellular and intracellular factors. Experiments with (sup14)C-labeled CT indicate that more than one nonvolatile product is produced during CT transformation by strain KC. One of these products, accounting for about 20% of the [(sup14)C]CT transformed, was identified as formate on the basis of its elution time from an ion-exchange column, its boiling point, and its conversion to (sup14)CO(inf2) when incubated with formate dehydrogenase. Production of formate requires transfer of two electrons to the CT molecule. The role of electron transfer was also supported by experiments demonstrating that stationary-phase cells that do not transform CT can be stimulated to transform CT when supplemented with acetate (electron donor), nitrate (electron acceptor), or a protonophore (carbonyl cyanide m-chlorophenylhydrazone). The location of transformation activity was also evaluated. By themselves, washed cells did not transform CT to a significant degree. Occasionally, CT transformation was observed by cell-free culture supernatant, but this activity was not reliable. Rapid and reliable CT transformation was only obtained when washed whole cells were reconstituted with culture supernatant, indicating that both extracellular and intracellular factors are normally required for CT transformation. Fractionation of culture supernatant by ultrafiltration established that the extracellular factor or factors are small, with an apparent molecular mass of less than 500 Da. The extracellular factor or factors were stable after lyophilization to powder and were extractable with acetone. Addition of micromolar levels of iron inhibited CT transformation in whole cultures, but the level of iron needed to inhibit CT transformation was over 100-fold higher for washed cells reconstituted with a 10,000-Da supernatant filtrate. Thus, the inhibitory effects of iron are exacerbated by a supernatant factor or factors with a molecular mass greater than 10,000 Da.  相似文献   

5.
Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium.  相似文献   

6.
Growth of Anabaena sp. strain 7120 (in the absence of chelators or added iron) was inhibited by the addition of 2.1 to 6.5 microM copper and was abolished by copper concentration of 10 microM or higher. When the copper was chelated to schizokinen (the siderophore produced by this organism in response to iron starvation), the toxic effects were eliminated. Analysis of culture filtrates showed that the cupric schizokinen remains in the medium, thereby lowering the amount of copper taken up by the cells. Although this organism actively transports ferric schizokinen, it apparently does not recognize the cupric complex. Thus, Anabaena sp. is protected from copper toxicity under conditions in which siderophore is being produced. For cells grown in low iron, the accumulation of extracellular schizokinen was observed to parallel cell growth and continue well into stationary phase. The actual iron status of the organism was monitored by using iron uptake velocity as an assay. Cultures grown on 0.1 microM added iron were found to be severely iron limited upon reaching stationary phase, thus explaining the continued production of schizokinen. These data show that the siderophore system in Anabaena spp. has developed primarily as a response to iron starvation and that additional functions such as alleviation of copper toxicity or allelopathic inhibition of other algal species are merely secondary benefits.  相似文献   

7.
Growth of Anabaena sp. strain 7120 (in the absence of chelators or added iron) was inhibited by the addition of 2.1 to 6.5 microM copper and was abolished by copper concentration of 10 microM or higher. When the copper was chelated to schizokinen (the siderophore produced by this organism in response to iron starvation), the toxic effects were eliminated. Analysis of culture filtrates showed that the cupric schizokinen remains in the medium, thereby lowering the amount of copper taken up by the cells. Although this organism actively transports ferric schizokinen, it apparently does not recognize the cupric complex. Thus, Anabaena sp. is protected from copper toxicity under conditions in which siderophore is being produced. For cells grown in low iron, the accumulation of extracellular schizokinen was observed to parallel cell growth and continue well into stationary phase. The actual iron status of the organism was monitored by using iron uptake velocity as an assay. Cultures grown on 0.1 microM added iron were found to be severely iron limited upon reaching stationary phase, thus explaining the continued production of schizokinen. These data show that the siderophore system in Anabaena spp. has developed primarily as a response to iron starvation and that additional functions such as alleviation of copper toxicity or allelopathic inhibition of other algal species are merely secondary benefits.  相似文献   

8.
Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium.  相似文献   

9.
Copper sulfide precipitation by yeasts from Acid mine-waters   总被引:1,自引:1,他引:0       下载免费PDF全文
Two strains of Rhodotorula and one of Trichosporon precipitated dissolved copper with H2S formed by reducing elemental sulfur with glucose. Iron stimulated this activity under certain conditions. In the case of Rhodotorula strain L, iron stimulated copper precipitation aerobically at a copper concentration of 18 but not 180 μg/ml. Anaerobically, the L strain required iron for precipitation of copper from a medium with 180 μg of copper per ml. Rhodotorula strain L was able to precipitate about five times as much copper anaerobically as aerobically. The precipitated copper was identified as copper sulfide, but its exact composition could not be ascertained. Iron was not precipitated by the H2S formed by any of the yeasts. Added as ferric iron, it was able to redissolve copper sulfide formed aerobically by Rhodotorula strain L from 18 but not 180 μg of copper per ml of medium. Since the yeasts were derived from acid mine-waters, their ability to precipitate copper may be of geomicrobial importance.  相似文献   

10.
The decreasing order of toxicity of select heavy metals on the yeast Saccharomyces cerevisiae, in 10 mM MES (2-(N-morpholino)ethanesulfonic acid) pH buffer at pH 6.0, was found to be copper, lead, and nickel. Heavy metal (200 microM) induced a decrease in the number of viable cells by about 50% in the first 5 min for copper and in 4 h for lead, while nickel was not toxic up to a 200 microM concentration over a period of 48 h. Glucose (25 mM) strongly enhanced the toxic effect of 50 microM copper but had little or no effect on the toxicity of 200 microM lead or nickel. Copper, lead, and nickel induced the leakage of UV260-absorbing compounds from cells with different kinetics. The addition of 0.5 mM calcium, before addition of 200 microM copper, showed a protective action against cell death and decreased the release of UV-absorbing compounds, while no effect was observed against lead or nickel toxic effects. Copper complexation capacities of the filtrates of cells exposed for 2 h in 200 microM copper and 24 h in 200 microM lead were 51 and 14 microM, respectively. The implication of the complexation shown by these soluble compounds in the bioavailability of heavy metals is discussed.  相似文献   

11.
The concentration of trace elements in L-cells has been studied as a function of the trace metal content of the growth medium. Cells were cultured in synthetic media which contained varying trace amounts of the elements manganese, iron, cobalt, copper, zinc and molybdenum. The cellular concentration of the elements potassium, iron, copper and zinc were then determined. It was found that the cell accumulates trace metals at a different rate than they are made available. Deficiencies in zinc could be “induced” in the cell by increasing the concentration of iron, manganese and cobalt; cellular iron deficiencies were observed at larger medium concentrations of zinc, manganese, copper and cobalt. Trace metal uptake by the cell was seen to parallel the utilization by multicellular organisms.  相似文献   

12.
To clarify the physiological roles of heat shock proteins induced by copper, we studied the synthesis of these proteins and metallothionein, as well as the level and nature of copper incorporated into HeLa cells. Incubation in medium containing 200 microM cupric sulfate and above induced the synthesis of 70,000-Da heat shock protein (hsp70) in these cells. However, the synthesis of hsp70 did not increase in the presence of less than 200 microM cupric sulfate. On the other hand, the synthesis of metallothionein increased due to 100 microM cupric sulfate. The uptake of copper into the cells depended on the cupric sulfate concentration in the medium. To analyze the nature of the intracellular copper, cell extracts were separated by gel filtration chromatography into three fractions: the high molecular weight, metallothionein, and low molecular weight fractions. No copper was found in the low molecular weight fraction of control cells, but appeared distinctly at 200 microM cupric sulfate and above. Copper in the high molecular weight fraction also began to increase at 200 microM cupric sulfate and above, whereas in the metallothionein fraction it began to increase even at 50 to 100 microM cupric sulfate. Furthermore, inhibition of cell growth was also observed at 200 microM cupric sulfate and above but not at 100 microM and below.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The copper-uptake process in the cell-wall-deficient slime variant of the fungus Neurospora crassa was compared with that in a wild-type strain. In both organisms investigated most of the copper is taken up from the culture medium during the exponential growth period. The wild-type strain, however, accumulates much more copper than does the slime variant. The influence of the copper concentration in the culture medium on the amounts of copper accumulated intracellularly suggests separate ways of copper import used by the two morphologically different N. crassa strains. Copper analyses of three different cytosolic fractions as a function of growth time or exogenous copper concentration indicate both strains to share a very similar copper metabolism. All the data presented are consistent with a detoxification function of the low-Mr copper-binding fraction of N. crassa. Both copper-metallothionein and oxidized glutathione (GSSG) are co-eluted with this fraction. The possible involvement of glutathione in metallothionein biosynthesis is discussed.  相似文献   

14.
Summary Copper contained in a solid industrial waste produced in a silicone manufacturing process was leached with spent iron medium from aThiobacillus ferrooxidans culture. Most effective leaching was observed in a continuously fed, dual reactor system. Spent iron medium was generated by growingT. ferrooxidans in 0.9 K iron medium at pH 1.5 in the first reactor, and was transferred to a second reactor in which it leached the copper from the waste. Leaching was effective at a pulp density of the waste material as high as 20%. In experiments run at a pulp density of 2.5%, the spent iron medium was most efficient in leaching copper when it was first diluted 100-fold with a mineral salts solution at pH 1.5. Removal of the copper from the waste appeared to involve its displacement by acid, dissolved mineral salts, and ferric iron. Potentials for practical application of this process are discussed.  相似文献   

15.
The objective of this study was to evaluate the effect of hydroxocobalamin (OH-Cbl) on transformation of high concentrations of carbon tetrachloride (CT) by Acetobacterium woodii (ATCC 29683). Complete transformation of 470 microM (72 mg/liter [aqueous]) CT was achieved by A. woodii within 2.5 days, when 10 microM OH-Cbl was added along with 25.2 mM fructose. This was approximately 30 times faster than A. woodii cultures (live or autoclaved) and medium that did not receive OH-Cbl and 5 times faster than those controls that did receive OH-Cbl, but either live A. woodii or fructose was missing. CT transformation in treatments with only OH-Cbl was indicative of the important contribution of nonenzymatic reactions. Besides increasing the rate of CT transformation, addition of fructose and OH-Cbl to live cultures increased the percentage of [(14)C]CT transformed to (14)CO(2) (up to 31%) and (14)C-labeled soluble materials (principally L-lactate and acetate), while decreasing the percentage of CT reduced to chloroform and abiotically transformed to carbon disulfide. (14)CS(2) represented more than 35% of the [(14)C]CT in the presence of reduced medium and OH-Cbl. Conversion of CT to CO was a predominant pathway in formation of CO(2) in the presence of live cells and added fructose and OH-Cbl. These results indicate that the rate and distribution of products during cometabolic transformation of CT by A. woodii can be improved by the addition of fructose and OH-Cbl.  相似文献   

16.
Hydroxamate production by Aquaspirillum magnetotacticum.   总被引:6,自引:1,他引:5  
Spent culture fluids from Aquaspirillum magnetotacticum MS-1 grown at high (20 microM) but not low (5 microM) iron concentration contained material yielding a positive hydroxamate test. Cells possessed six major outer membrane proteins. Three outer membrane proteins ranging from 72,000 to 85,000 daltons were coordinately produced at iron concentrations conducive to hydroxamate production. A 55,000-dalton iron-repressible outer membrane protein was also present in strain MS-1 cultured at low but not high ferric quinate concentration. Culture fluids from strain MS-1 which were hydroxamate positive augmented growth of a Salmonella typhimurium siderophore-deficient (enb-7) mutant in low-iron medium, suggesting a role of hydroxamate in uptake of iron by the cell.  相似文献   

17.
【目的】研究微生物的碳氮共脱除特性及其关键影响因素。【方法】以乙酸为唯一碳源分离获得的碳氮共脱除菌株Y5为模式菌株,分析菌株Y5的16S r RNA基因序列、碳源和氮源去除动力学,以及碳源种类、碳氮比(C/N)、溶解氧浓度(DO)、温度和p H等影响效果。【结果】菌株Y5归属于粪产碱杆菌。与葡萄糖及多种有机酸相比,菌株Y5在以乙酸为唯一碳源的条件下具有较高的TOC和NH4+-N去除速率。在好氧条件下,当起始TOC浓度为1 000 mg/L,氨氮浓度为110 mg/L时,菌株Y5的NH4+-N、TOC和总氮(TN)去除率分别达99.54%、92.95%和86.55%,最大NH4+-N、TOC和TN去除速率分别为903.58、505.81和406.03 mg/(L·d)。【结论】粪产碱杆菌Y5在以乙酸为唯一碳源的条件下具有较强的碳氮共脱除能力,其最佳反应条件为:C/N=10,p H 7.0-8.0,溶氧6.20 mg/L,反应温度为30°C。  相似文献   

18.
The action of copper on the pyramidal neurons in CA1 of the hippocampus is little understood. Our main aim was to study the possible interaction of copper on the synaptic network in CA1 pyramidal neurons. We used Wistar rats hippocampus slices in a recording chamber. The population response ("population of spikes") collected by an extracellular micropipette under baseline conditions served as control. Copper, GABA, bicuculline and picrotoxin were delivered in different experimental conditions to the slice. One, 10 and 100 microM of copper concentration decreased significantly the amplitude and duration of the population spikes in relation to the control response. This effect did not show concentration dependency. Copper in bicuculline medium decreased significantly the duration response in relation to the control response and in relation to copper effect in a free bicuculline medium. This phenomenon emphasizes the copper action on the GABA (B) and (C) receptors. Copper in a picrotoxin medium increased significantly the excitability of the response. This new effect suggests that copper acts on non-GABA receptors, an effect that could be detected when the GABA receptors were inactivated. As a result of these findings it appears that, under our experimental conditions, copper generated transient sensitivity changes in pyramidal neurons of CA1 dorsal hippocampus.  相似文献   

19.
Trace elements and lipid peroxidation in human seminal plasma   总被引:3,自引:0,他引:3  
In the present study, the concentrations of copper, iron, zinc, and malondialdehyde in human seminal plasma were measured and correlated with the sperm count and motility in human semen. Copper, iron, and zinc were analyzed by atomic absorption spectrometry, whereas malondialdehyde was measured by high-performance liquid chromatography. The malondialdehyde concentrations in asthenospermia and oligoasthenospermia were significantly higher than in normospermia. Copper and iron levels were higher in asthenospermia, whereas the zinc concentrations in both oligospermia and asthenospermia were lower than in normal controls. A negative correlation (r = -0.28, p < 0.05) between the malondialdehyde concentration and sperm motility was observed in the abnormal groups. There was no association among copper, iron, zinc, and malondialdehyde in seminal plasma. We concluded that changes in trace elements may be related to sperm quality and that lipid peroxidation, although it is not promoted in the seminal plasma by copper or iron or ameliorated by zinc, may be involved in the loss of sperm motility.  相似文献   

20.
Trace element budget in an African savannah ecosystem   总被引:1,自引:1,他引:0  
The concentration of selected trace elements (Co, Cu, Fe, Mn, Mo, Se, and Zn) were analysed in soils, grass, bush, and tree samples from the Mole National Park, Ghana. The distribution of the essential nutrients: cobalt, copper, manganese, and selenium is controlled by bedrock geology, whereas iron, molybdenum, and zinc distribution is controlled by soil and hydrological processes. In the soils, iron, manganese, and cobalt are largely fixed in the mineral fraction while most of the copper, molybdenum, and selenium in the soils can be extracted by disodium ethylenediaminetetracetate. Copper, cobalt, and manganese appear to be preferentially concentrated in grass species while molybdenum and selenium are concentrated in browse plants. Variations in uptake exist between wet and dry seasons with all trace elements studied, except iron and manganese, showing a marked increased availability in the wet season and increased concentration in the residual fraction of the mineral and organic soils in the dry season. In the dry season the plant concentration of molybdenum and selenium decreased while copper and zine showed increased concentrations and this may be related to a lower pH of the groundwaters at this time. A budget of metal input and output in the ecosystem at Mole has been computed. From this potential dietary deficiencies in cobalt can be observed, however for other metals soil and plant concentrations are sufficient to prevent straightforward deficiencies while the concentrations of molybdenum and selenium are sufficiently low to be considered safe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号