首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following the original proposals about myosin filament structure put forward as part of a general myosin filament model (Squire, 1971, 1972) it is here shown what the most likely molecular packing arrangements within the backbones of certain myosin filaments would be assuming that the model is correct. That this is so is already indicated by recently published experimental results which have confirmed several predictions of the model (Bullard and Reedy, 1972; Reedy et al., 1972; Tregear and Squire, 1973).The starting point in the analysis of the myosin packing arrangements is the model for the myosin ribbons in vertebrate smooth muscle proposed by Small &; Squire (1972). It is shown that there is only one reasonable type of packing arrangement for the rod portions of the myosin molecules which will account for the known structure of the ribbons and which is consistent with the known properties of myosin molecules. The dominant interactions in this packing scheme are between parallel myosin molecules which are related by axial shifts of 430 Å and 720 Å. In this analysis the myosin rods are treated as uniform rods of electron density and only the general features of two-strand coiled-coil molecules are considered.Since the general myosin filament model is based on the assumption that the structures of different types of myosin filament must be closely related, the packing scheme derived for the myosin ribbons is used to deduce the structures of the main parts (excluding the bare zones) of the myosin filaments in a variety of muscles. It is shown in each case that there is only one packing scheme consistent with all the available data on these filaments and that in each filament type exactly the same interactions between myosin rods are involved. In other words the myosin-myosin interactions involved in filament formation are specific, they involve molecular shifts of either 430 Å or 720 Å, and are virtually identical in all the different myosin filaments which have been considered. Apart from the myosin ribbons, these are the filaments in vertebrate skeletal muscle, insect flight muscle and certain molluscan muscles.In the case of the thick filaments in vertebrate skeletal muscle the form of the myosin packing arrangement in the bare zone is considered and a packing scheme proposed which involves antiparallel overlaps between myosin rods of 1300 Å and 430 Å. It is shown that this scheme readily explains the triangular profiles of the myosin filaments in the bare zone (Pepe, 1967, 1971) and many other observations on the form of these myosin filaments.Finally it is shown that the cores of several different myosin filaments, assuming they contain protein, may consist of different arrangements of one or other of two types of core subfilament.  相似文献   

2.
Teleost retinal cones contract in light and elongate in darkness. This paper describes the disposition of microtubules and cytoplasmic filaments in cone cells of 2 species of fish (Haemulon sciurus and Lutjanus griseus). In Haemulon, the neck-like “myoid” region of the cone changes in length from 5 μ to 75 μ. Maximal observed rates of elongation and contraction are comparable to that of chromosome movement in mitosis (2–3 μ/min). Microtubules presumably participate in cone elongation, since numerous longitudinal microtubules are present in the myoid region, and colchicine blocks dark-induced elongation. Myoid shortening, on the other hand, appears to be an active contractile process. Disruption of microtubules in dark-adapted cones does not produce myoid shortening in the absence of light, and light-induced myoid shortening is blocked by cytochalasin-B. Cone cells possess longitudinally-oriented thin filaments which bind myosin subfragment-1 to form arrowhead complexes typical of muscle actin. Myoid thin filaments are clearly observed in negatively stained preparations of isolated cones which have been disrupted with detergent after attachment to grids. These myoid filaments are not, however, generally preserved by conventional fixation, though bundles of thin filaments are preserved in other regions of the cell. Thus, actin filaments are poorly retained by fixation in precisely the region of the cone cell where contraction occurs. Cone cells also possess longitudinally-oriented thick filaments 130–160Å in diameter. That these thick filaments may be myosin is suggested by the presence of side-arms with approximately 150 Å periodicity. The linear organization of the contractile apparatus of the retinal cone cell makes this cell a promising model for morphological characterization of the disposition of actin and myosin filaments during contraction in a nonmuscle cell.  相似文献   

3.
Synthetic myosin filaments with regular projections at intervals of 430 Å along their entire lengths have been observed using the electron microscope. The filaments were formed following dialysis in or rapid dilution to 0.3 m-KC1, 0.01 m-imidazole or phosphate buffer, pH 7.0. It is suggested that these filaments are made up of myosin molecules staggered by 430 Å.  相似文献   

4.
5.
Non-specific termination of simian virus 40 DNA replication.   总被引:4,自引:0,他引:4  
Axial X-ray diffraction patterns have been studied from relaxed, contracted and rigor vertebrate striated muscles at different sarcomere lengths to determine which features of the patterns depend on the interaction of actin and myosin. The intensity of the myosin layer lines in a live, relaxed muscle is sometimes less in a stretched muscle than in the muscle at rest-length; the intensity depends not only on the sarcomere length but on the time that has elapsed since dissection of the muscle. The movement of cross-bridges giving rise to these intensity changes are not caused solely by the withdrawal of actin from the A-band.When a muscle contracts or passes into rigor many changes occur that are independent of the sarcomere length: the myosin layer lines decrease in intensity to about 30% of their initial value when the muscle contracts, and disappear completely when the muscle passes into rigor. Both in contracting and rigor muscles at all sarcomere lengths the spacings of the meridional reflections at 143 Å and 72 Å are 1% greater than from a live relaxed muscle at rest-length. It is deduced that the initial movement of cross-bridges from their positions in resting muscle does not depend on the interaction of each cross-bridge with actin, but on a conformational change in the backbone of the myosin filament: occurring as a result of activation. The possibility is discussed that the conformational change occurs because the myosin filament, like the actin filament, has an activation control mechanism. Finally, all the X-ray diffraction patterns are interpreted on a model in which the myosin filament can exist in one of two possible states: a relaxed state which gives a diffraction pattern with strong myosin layer lines and an axial spacing of 143.4 Å, and an activated state which gives no layer lines but a meridional spacing of 144.8 Å.  相似文献   

6.
We have used two in vitro motility assays to study the relative movement of actin and myosin from turkey gizzards (smooth muscle) and human platelets. In the Nitella-based in vitro motility assay, myosin-coated polymer beads move over a fixed substratum of actin bundles derived from dissection of the alga, Nitella, whereas in the sliding actin filament assay fluorescently labeled actin filaments slide over myosin molecules adhered to a glass surface. Both assay systems yielded similar relative velocities using smooth muscle myosin and actin under our standard conditions. We have studied the effects of ATP, ionic strength, magnesium, and tropomyosin on the velocity and found that with the exception of the dependence on MgCl2, the two assays gave very similar results. Calcium over a concentration of pCa 8 to 4 had no effect on the velocity of actin filaments. Phosphorylated smooth muscle myosin propelled filaments of smooth muscle and skeletal muscle actin at the same rate. Phosphorylated smooth muscle and cytoplasmic myosin monomers also moved actin filaments, demonstrating that filament formation is not required for movement.  相似文献   

7.
Summary Changes in the contractile apparatus of denervated rat soleus muscles were investigated during the course of reinnervation.As observed earlier, in the course of denervation atrophy the ratio of myosin to actin filaments decreases because myosin filaments disappear faster than actin filaments (Jakubiec-Puka et al. 1981 a). After reinnervation the amount of myosin filaments and myosin heavy chains (myosin HC) in the muscle increased during the first few days; the increment of actin content was negligible. The proportion of myosin HC to actin remained lower than normal for about 30 days. The excess of actin filaments frequently observed in the newly-formed myofibrils reflects this disproportion.The results show a lability of myosin and suggest some cytoskeletal role for actin filaments.  相似文献   

8.
9.
In embryonic skeletal muscle, a large amount of non-polymerized actin exists in the cytoplasm (Shimizu and Obinata [1986] J. Biochem. 99, 751-759). A 19-kDa protein (called 19K protein) which binds to G-actin was purified by sequential chromatography on DNase I-agarose, hydroxylapatite, SP-Sephadex, and Sephadex G-75, from the sarcoplasmic fraction of embryonic chicken skeletal muscle. This protein decreased the extent of actin polymerization at a steady state and increased the monomeric actin in a concentration-dependent fashion; it also caused quick depolymerization of F-actin, as determined by spectrophotometry at 237 nm, viscometry, DNase I inhibition assay, and electron microscopy. The molar ratio of 19K protein and actin interacting with each other was estimated to be 1:1. From these results, 19K protein was regarded as being actin depolymerizing protein. The amount of 19K protein in muscle decreased during development. The inhibitory action of 19K protein was removed by myosin or heavy meromyosin, and actin filaments were formed on the surface of myosin filaments when myosin filaments were added to a mixture of actin and 19K protein in a physiological salt solution. We propose that actin assembly is dually controlled in the developing muscle by the inhibitor(s) and an accelerator (myosin); this mechanism may enable the ordered assembly of actin and myosin in the early phase of myofibrillogenesis.  相似文献   

10.
The interaction of isolated flagellar filaments of Bacillus brevis var. G.-B. P+ with skeletal muscle myosin has been investigated. Bacterial flagellar filaments co-precipitate with myosin at low ionic strength (at the conditions of myosin aggregation). Addition of bacterial flagellar filaments to myosin led to inhibition of its K+-EDTA- and Ca2+-ATPase activity, but had no influence on Mg2+-ATPase. Monomeric protein of bacterial flagella filaments (flagellin) did not co-precipitate with myosin and had no influence on its ATPase activity. The flagella filaments did not co-precipitate with myosin in the presence of F-actin if it was mixed with myosin before the filaments. If the flagella filaments were added to myosin solution before the addition of F-actin the amount of filaments and actin in myosin precipitate were comparable. In this case the presence of flagella filaments decreased activation of myosin Mg2+-ATPase by actin to 25-30%. Thus the bacterial flagellar filaments are able to interact with myosin and modify its ATPase activity. Probably, these properties of filaments are caused by resemblance of flagellin and actin. For instance, the unique origin of these proteins may be the reason of such resemblance.  相似文献   

11.
Caldesmon (CaD), a component of microfilaments in all cells and thin filaments in smooth muscle cells, is known to bind to actin, tropomyosin, calmodulin, and myosin and to inhibit actin-activated ATP hydrolysis by smooth muscle myosin. Thus, it is believed to regulate smooth muscle contraction, cell motility and the cytoskeletal structure. Using bladder smooth muscle cell cultures and RNA interference (RNAi) technique, we show that the organization of actin into microfilaments in the cytoskeleton is diminished by siRNA-mediated CaD silencing. CaD silencing significantly decreased the amount of polymerized actin (F-actin), but the expression of actin was not altered. Additionally, we find that CaD is associated with 10 nm intermediate-sized filaments (IF) and in vitro binding assay reveals that it binds to vimentin and desmin proteins. Assembly of vimentin and desmin into IF is also affected by CaD silencing, although their expression is not significantly altered when CaD is silenced. Electronmicroscopic analyses of the siRNA-treated cells showed the presence of myosin filaments and a few surrounding actin filaments, but the distribution of microfilament bundles was sparse. Interestingly, the decrease in CaD expression had no effect on tubulin expression and distribution of microtubules in these cells. These results demonstrate that CaD is necessary for the maintenance of actin microfilaments and intermediate-sized filaments in the cytoskeletal structure. This finding raises the possibility that the cytoskeletal structure in smooth muscle is affected when CaD expression is altered, as in smooth muscle de-differentiation and hypertrophy seen in certain pathological conditions.  相似文献   

12.
Par-4 (prostate apoptosis response 4) is a pro-apoptotic protein and tumour suppressor that was originally identified as a gene product up-regulated during apoptosis in prostate cancer cells. Here, we show, for the first time, that Par-4 is expressed and co-localizes with the actin filament bundles in vascular smooth muscle. Furthermore, we demonstrate that targeting of ZIPK to the actin filaments, as observed upon PGF-2α stimulation, is inhibited by the presence of a cell permeant Par-4 decoy peptide. The same decoy peptide also significantly inhibits PGF-2α induced contractions of smooth muscle tissue. Moreover, knockdown of Par-4 using antisense morpholino nucleotides results in significantly reduced contractility, and myosin light chain and myosin phosphatase target subunit phosphorylation. These results indicate that Par-4 facilitates contraction by targeting ZIPK to the vicinity of its substrates, myosin light chain and MYPT, which are located on the actin filaments. These results identify Par-4 as a novel regulator of myosin light chain phosphorylation in differentiated, contractile vascular smooth muscle.  相似文献   

13.
Three-dimensional reconstructions of “barbed” and “blunted” arrowheads (Craig et al., 1980) show that these two forms arise from arrangement of scallop myosin subfragments (S1) that appear about 40 Å longer in the presence of the regulatory light chain than in its absence. A similar difference in apparent length is indicated by images of single myosin subfragments in partially decorated filaments. The extra mass is located at the end of the subfragment furthest from actin, and probably comprises part of the regulatory light chain as well as a segment of the myosin heavy chain. The fact that barbed arrowheads are also formed by myosin subfragments from vertebrate striated and smooth muscles implies that the homologous light chains in these myosins have locations similar to that of the scallop light chain.The scallop light chain probably does not extend into the actin-binding site on the myosin head, and is therefore unlikely to interfere physically with binding. Rather, regulation of actin-myosin interaction by light chains may involve Ca2+-dependent changes in the structure of a region near the head-tail junction of myosin.The reconstructions suggest locations for actin and tropomyosin relative to myosin that are similar to those proposed by Taylor & Amos (1981) and are consistent with a revised steric blocking model for regulation by tropomyosin. The identification of actin from these reconstructions is supported by images of partially decorated filaments that display the polarity of the actin helix relative to that of bound myosin subfragments.  相似文献   

14.
Contractile activity of myosin II in smooth muscle and non-muscle cells requires phosphorylation of myosin by myosin light chain kinase. In addition, these cells have the potential for regulation at the thin filament level by caldesmon and calponin, both of which bind calmodulin. We have investigated this regulation using in vitro motility assays. Caldesmon completely inhibited the movement of actin filaments by either phosphorylated smooth muscle myosin or rabbit skeletal muscle heavy meromyosin. The amount of caldesmon required for inhibition was decreased when tropomyosin is present. Similarly, calponin binding to actin resulted in inhibition of actin filament movement by both smooth muscle myosin and skeletal muscle heavy meromyosin. Tropomyosin had no effect on the amount of calponin needed for inhibition. High concentrations of calmodulin (10 microM) in the presence of calcium completely reversed the inhibition. The nature of the inhibition by the two proteins was markedly different. Increasing caldesmon concentrations resulted in graded inhibition of the movement of actin filaments until complete inhibition of movement was obtained. Calponin inhibited actin sliding in a more "all or none" fashion. As the calponin concentration was increased the number of actin filaments moving was markedly decreased, but the velocity of movement remained near control values.  相似文献   

15.
A filamentous cytoskeleton in vertebrate smooth muscle fibers.   总被引:28,自引:7,他引:21       下载免费PDF全文
There are three classes of myofilaments in vertebrate smooth muscle fibers. The thin filaments correspond to actin and the thick filaments are identified with myosin. The third class of myofilaments (100 A diam) is distinguished from both the actin and the myosin on the basis of fine structure, solubility, and pattern of localization in the muscle fibers. Direct structural evidence is presented to show that the 100A filament constitute an integrated filamentous network with the dense bodies in the sarcoplasm, and that they are not connected to either the actin or myosin filaments. Examination of (a) isolated dense bodies, (b) series of consecutive sections through the dense bodies, and (c) redistributed dense bodies in stretched muscle fibers supports this conclusion. It follows that the 100-A filaments complexes constitute a structrally distinct filamentous network. Analysis of polyacrylamide gels after electrophoresis of cell fractions that are enriched with respect to the 100-A filaments shows the presence of a new muscle protein with a molecular weight of 55,000. This protein can form filamentous segments that closely resemble in structure the native, isolated 100-A filaments. The results indicate that the filamentous network has a structure and composition that distinguish it from the actin and myosin in vertebrate smooth muscle.  相似文献   

16.
Calponin-related proteins are widely distributed among eukaryotes and involved in signaling and cytoskeletal regulation. Calponin-like (CLIK) repeat is an actin-binding motif found in the C-termini of vertebrate calponins. Although CLIK repeats stabilize actin filaments, other functions of these actin-binding motifs are unknown. The Caenorhabditis elegans unc-87 gene encodes actin-binding proteins with seven CLIK repeats. UNC-87 stabilizes actin filaments and is essential for maintenance of sarcomeric actin filaments in striated muscle. Here we show that two UNC-87 isoforms, UNC-87A and UNC-87B, are expressed in muscle and nonmuscle cells in a tissue-specific manner by two independent promoters and exhibit quantitatively different effects on both actin and myosin. Both UNC-87A and UNC-87B have seven CLIK repeats, but UNC-87A has an extra N-terminal extension of ∼190 amino acids. Both UNC-87 isoforms bind to actin filaments and myosin to induce ATP-resistant actomyosin bundles and inhibit actomyosin motility. UNC-87A with an N-terminal extension binds to actin and myosin more strongly than UNC-87B. UNC-87B is associated with actin filaments in nonstriated muscle in the somatic gonad, and an unc-87 mutation causes its excessive contraction, which is dependent on myosin. These results strongly suggest that proteins with CLIK repeats function as a negative regulator of actomyosin contractility.  相似文献   

17.
To clarify the extensibility of thin actin and thick myosin filaments in muscle, we examined the spacings of actin and myosin filament-based reflections in x-ray diffraction patterns at high resolution during isometric contraction of frog skeletal muscles and steady lengthening of the active muscles using synchrotron radiation as an intense x-ray source and a storage phosphor plate as a high sensitivity, high resolution area detector. Spacing of the actin meridional reflection at approximately 1/2.7 nm-1, which corresponds to the axial rise per actin subunit in the thin filament, increased about 0.25% during isometric contraction of muscles at full overlap length of thick and thin filaments. The changes in muscles stretched to approximately half overlap of the filaments, when they were scaled linearly up to the full isometric tension, gave an increase of approximately 0.3%. Conversely, the spacing decreased by approximately 0.1% upon activation of muscles at nonoverlap length. Slow stretching of a contracting muscle increased tension and increased this spacing over the isometric contraction value. Scaled up to a 100% tension increase, this corresponds to a approximately 0.26% additional change, consistent with that of the initial isometric contraction. Taken together, the extensibility of the actin filament amounts to 3-4 nm of elongation when a muscle switches from relaxation to maximum isometric contraction. Axial spacings of the layer-line reflections at approximately 1/5.1 nm-1 and approximately 1/5.9 nm-1 corresponding to the pitches of the right- and left-handed genetic helices of the actin filament, showed similar changes to that of the meridional reflection during isometric contraction of muscles at full overlap. The spacing changes of these reflections, which also depend on the mechanical load on the muscle, indicate that elongation is accompanied by slight changes of the actin helical structure possibly because of the axial force exerted by the actomyosin cross-bridges. Additional small spacing changes of the myosin meridional reflections during length changes applied to contracting muscles represented an increase of approximately 0.26% (scaled up to a 100% tension increase) in the myosin periodicity, suggesting that such spacing changes correspond to a tension-related extension of the myosin filaments. Elongation of the myosin filament backbone amounts to approximately 2.1 nm per half sarcomere. The results indicate that a large part (approximately 70%) of the sarcomere compliance of an active muscle is caused by the extensibility of the actin and myosin filaments; 42% of the compliance resides in the actin filaments, and 27% of it is in the myosin filaments.  相似文献   

18.
Tropomyosin is a protein that controls the interactions of actin and myosin as a part of the regulation of muscle contraction. The 420 Å long α-helical coiled-coil molecules form long filaments, both in muscle and in crystals. The x-ray diffraction data from tropomyosin crystals have indicated large scale motions of the filaments that can be related to the inherent mechanical properties of the molecule, and by extension, to the role of tropomyosin in the cooperative activation of the thin filaments of muscle. Diffuse scattering analysis has provided information about the amplitudes of the motions that has been used to calculate the intrinsic flexibility of the molecule. It can then be shown that each tropomyosin molecule by itself can only mediate interactions of the nearest-neighboring tropomyosin molecules along the filament. The repeating nature of the thin filament, however, allows the entire filament to activate cooperatively. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Cold-sensitive regulatory mutants of simian virus 40   总被引:53,自引:0,他引:53  
A preparation of short synthetic myosin filaments (minifilaments) in the absence of other myosin forms is reported. Myosin minifilaments have been prepared by dialysing myosin from vertebrate striated muscle into 10 mm-citrate/Tris buffer (pH 8.0 at 4 °C) containing no other salt. These polymers of myosin are very stable and show little tendency to aggregate or dissociate in the original solvent. Sedimentation velocity, diffusion and viscosity measurements indicate that the minifilaments are composed of 16 to 18 molecules. Examination of electron micrographs reveals that the bare central region of minifilaments extends over 1600 to 1800 Å and the entire particles are about 3000 Å long with a diameter of 80 Å across the smooth region. They have the appearance of short bipolar filaments (Huxley, 1963). In solution the minifilaments are homogeneous in terms of size distribution and exhibit normal MgATPase and CaATPase activities. When examined in the ultracentrifuge, the minifilaments sediment in the form of a hypersharp peak (or bar) with a sedimentation coefficient independent of rotor speed. The minifilaments can be dissociated by ATP, hardly by MgATP; whereas KCl (between 0.04 and 0.2 m) induces further polymerization. It is suggested that the minifilaments are an intermediate in the assembly of myosin filaments.  相似文献   

20.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号