首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parasitism, offspring sex ratio and superparasitism of the facultative autoparasitoid Encarsia tricolor Foërster (Hymenoptera: Aphelinidae) when given access to arenae with different proportions of the primary host (Trialeurodes vaporariorum (Westwood)) and two species of secondary hosts (E. tricolor and Encarsia formosa Gahan) were studied.Parasitism and offspring sex ratio were not affected by female age in the range 3–10 days old. When the secondary hosts were young E. tricolor pupae, eggs were mostly laid on primary hosts, so the offspring sex ratio was more female-biased than expected, and secondary hosts were not superparasitized at all. When the secondary hosts were fully grown E. formosa larvae, superparasitism was small and offspring sex ratio was more male-biased than expected. E. tricolor females were able to discriminate between hosts previously parasitized by themselves and non-parasitized hosts.  相似文献   

2.
The ovipositional patterns of the heteronomous hyperparasitoid Encarsia pergandiella Howard (Hymenoptera: Aphelinidae) in the presence of its primary host Bemisia argentifolii Bellows & Perring (Hemiptera: Aleyrodidae), and in the presence or absence of conspecific and heterospecific secondary hosts (Encarsia formosa Gahan andEretmocerus mundus Mercet; Hymenoptera: Aphelinidae) were examined to assess host species preferences. Host preferences by heteronomous hyperparasitoids may affect the relative abundance of co-occurring parasitoid species and may influence host population suppression by the parasitoid community. Four combinations of hosts were tested: (1) B. argentifolii, E. mundus, and E. formosa, (2) B. argentifolii, E. formosa, and E. pergandiella, (3) B. argentifolii, E. mundus, and E. pergandiella, and, (4) B. argentifolii, E. mundus, E. formosa, and E. pergandiella. Arrays of hosts (24) were constructed in Petri dishes using leaf disks, each bearing one host. Thirty arrays of each host combination were exposed to single females for 6 h. All hosts were dissected to determine number of eggs per host. Encarsia pergandiella parasitized E. formosa hosts as frequently as E. mundus hosts. However, E. pergandiella parasitized either of these heterospecific hosts more frequently than conspecific hosts in treatments including two secondary host species. When a third parasitoid species was included in host arrays, E. pergandiella parasitized conspecific hosts as frequently as heterospecific hosts. Developmental stage of the hosts did not significantly influence host species selection by E. pergandiella. Our results indicate that host selection and oviposition by heteronomous hyperparasitoids like E. pergandiella, vary with the composition of hosts available for parasitization, and suggest a preference for heterospecific over conspecific secondary hosts.  相似文献   

3.
The foraging behavior of Amitus fuscipennis MacGown & Nebeker and Encarsia formosa Gahan was studied on tomato leaflets with 20 Trialeurodes vaporariorum (Westwood) larvae in the first or third stage. Ten of the whitefly larvae were previously parasitized and contained a conspecific or a heterospecific parasitoid egg or larva. The host type (host stage and/or previous parasitization) did not influence the foraging behavior of either parasitoid species. The residence time on these tomato leaflets was about 0.9 h for A. fuscipennis and 1.9 h for E. formosa. Amitus fuscipennis hardly stood still and fed little, while E. formosa showed extensive standing still and feeding. As a result, the time walking while drumming was similar for both parasitoid species. The numbers of host encounters and ovipositions per leaflet were similar for both parasitoid species. However, the residence time of A. fuscipennis was half as long as that of E. formosa so the rate of encounters and ovipositions was higher for A. fuscipennis. Amitus fuscipennis is more efficient in finding and parasitizing hosts under these conditions. The walking activity and host acceptance of the synovigenic E. formosa diminished with the number of ovipositions, but not those of the proovigenic A. fuscipennis. Encarsia formosa is egg limited, while A. fuscipennis is time limited because of its short life span and high egg load. Both parasitoid species discriminated well between unparasitized larvae and self-parasitized larvae, but discriminated poorly those larvae parasitized by a conspecific and did not discriminate larvae parasitized by a heterospecific. Self-superparasitism, conspecific superparasitism, and multiparasitism were observed for both parasitoid species. Superparasitism always resulted in the emergence of one parasitoid and multiparasitism resulted in a higher emergence of one parasitoid of the species that had parasitized first. The data suggest that A. fuscipennis is a good candidate for use in biological control of high-density spots of T. vaporariorum when we consider its high encounter and oviposition rate.  相似文献   

4.
Recent population dynamic theory predicts that disruption of biological control may occur when one parasitoid species' superiority in intrinsic competition is associated with a lower ability to find and exploit hosts (i.e., ability in extrinsic competition). One might expect such a trade-off, for instance, if parasitoids with larger (and fewer) eggs are more likely to prevail in intrinsic competition than species with smaller (and more numerous) eggs. We tested the idea that relative egg size could be used to predict the outcome of intrinsic competition in two closely related endoparasitoids, Encarsia pergandiella Howard and Encarsia formosa Gahan. Contrary to expectation, the parasitoid species with smaller eggs, E. pergandiella, prevailed in intrinsic competition, regardless of the order that hosts were exposed to the two species. In a literature survey, we found four studies of competing pairs of endoparasitoid species for which: (a) egg size estimates were available and (b) one species was consistently superior in intrinsic competition. In three of the four studies, the small-egged species prevailed in intrinsic competition, as we also found. Although E. formosa lost in intrinsic competition, this species negatively affected E. pergandiella's progeny production by host feeding on and killing hosts containing E. pergandiella eggs. E. formosa females also host fed on conspecific-parasitized hosts. As a mechanism of both intra- and interspecific interference competition, host feeding on parasitized hosts contradicts assumptions about the nature of interference competition in existing population dynamics models.  相似文献   

5.
Autoparasitoids are species of parasitic wasps in the family Aphelinidae which produce females as solitary primary endoparasitoids of homopterans such as whitefly and scale insects (primary hosts), and males as solitary hyperparasitoids. Males generally develop on immature conspecific females or on individuals of other primary parasitoid species (secondary hosts). Encarsia pergandiella is an autoparasitoid that has been introduced to Italy for control of greenhouse whitefly Trialeurodes vaporariorum, in greenhouses and field crops. In this study we examined the secondary host selection behaviour of this species with regard to conspecific females and females of two thelytokous species, E. formosa and E. meritoria. Encarsia formosa has been used successfully for greenhouse whitefly control in Northern Europe, but has not been effective in Southern Italy in winter crops in unheated greenhouses. E. meritoria has recently spread in Italy, and may have potential for biological control of whitefly in the greenhouse environment. In the first experiment, female E. pergandiella were exposed to one of three pair-wise combinations of the three species in petri dish arenas. Parasitism was determined by dissection of the hosts. The number of hosts parasitized by E. pergandiella females did not differ with host species. However, significantly greater numbers of eggs were laid in E. meritoria in both treatments in which it was present; these hosts were more likely to be superparasitized. In a second experiment, observations of females in arenas with equal numbers of all three host species indicated that females encountered and parasitized all host species with approximately equal frequency, although the length of time females spent in the oviposition posture differed with host species.  相似文献   

6.
More wasps of Encarsia formosa Gahan (Hymenoptera: Aphelinidae) were found on fertilized poinsettias, Euphorbia pulcherrima (Willd.) (Euphorbiaceae), than on non-fertilized plants. Parasitization of Bemisia argentifolii Bellows & Perring (Homoptera: Aleyrodidae) by E. formosa was higher on plants treated with calcium nitrate than with ammonium nitrate or on control plants. In a no-choice test, host feeding by E. formosa was higher when hosts were on fertilized plants than when hosts were on control plants. The nitrogen content of whitefly pupae reared on plants treated with ammonium nitrate was higher than those on calcium nitrate-treated plants.Variability in the parasitization of B. argentifolii by E. formosa appears to be due to host plant-mediated differences in the whiteflies. E. formosa may be influenced by the nutritional suitability of the host, which influences whether wasps continue to oviposit, feed, or disperse.  相似文献   

7.
Although hyperparasitism frequently occur in parasitic insects, many aspects of this strategy remain unknown. We investigated possible fitness costs of hyperparasitism as influenced by host size. Our study was conducted with the facultative hyperparasitoid Pachycrepoideus dubius Ashmead (Hymenoptera: Pteromalidae), which parasitizes host species differing greatly in size. We compared some fitness traits (level of successful parasitism, development time, sex ratio and offspring size) of P. dubius developing on large secondary/primary (Delia radicum L. (Diptera: Anthomyiidae)/Trybliographa rapae Westwood (Hymenoptera: Figitidae)) or small secondary/primary host species (Drosophila melanogaster L./Asobara tabida Nees (Hymenoptera: Braconidae)). In no-choice and choice experiments, P. dubius was able to develop on different stages of T. rapae (L2 (endophagous), L4 (ectophagous), and pupae) but that it preferred to parasitize unparasitized D. radicum pupae over pupae parasitized by T. rapae. Furthermore, in P. dubius, hyperparasitism was associated with fitness costs (lower level of successful parasitism, smaller adult size) and these costs were greater on the smallest host complex. We hypothesize that the size of D. melanogaster pupae parasitized by A. tabida may be close to the suboptimal host size for P. dubius beneath which the costs of hyperparasitism make this strategy nonadaptive. Hyperparasitism in terms of trade-offs between host quality and abundance of competitors is discussed.  相似文献   

8.
Endoparasitic Hymenoptera vary in the extent to which they provision their eggs and thus in the degree to which they appear to rely on their hosts for resources during embryonic development. In this study, developmental rates were examined in two congeneric parasitoid species, Encarsia formosa and E. pergandiella, that provision their eggs to different degrees. E. formosa eggs are much larger than E. pergandiella eggs. E. formosa eggs hatch significantly earlier than the eggs of E. pergandiella when deposited in 1st or 4th instar nymphs of a common whitefly host, Bemisia tabaci. Both species hatch earlier in 4th instar nymphs, but the delay in hatching in hosts parasitized as 1st instars is much greater in E. pergandiella. While E. formosa develops more rapidly to the 1st larval instar, E. pergandiella emerge as adults significantly earlier, though smaller, than E. formosa adults regardless of the host instar parasitized. These findings show that the extent of provisioning in the eggs of these wasps does not strictly determine their order of progression through different stages of development.  相似文献   

9.
Adult longevity, developmental time and juvenile mortality ofEncarsia formosa Gahan (Hymenoptera:Aphelinidae) parasitizing the Poinsettia-strain ofBemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on Poinsettia (Euphorbia pulcherrima Willd.) were investigated in laboratory experiments at three temperatures: 16 °C, 22 °C and 28 °C. Furthermore, the parasitoid's preference for different larval stages of the whitefly was determined at 24.5 °C. The lifespan ofE. formosa decreased with temperature from one month at 16 °C to nine days at 28 °C. A lower temperature threshold of 11 °C for adult development was found. The development of juvenile parasitoids inB. tabaci lasted more than two months at the lowest temperature, but was only 14 days when temperature was 28 °C. The lower temperature threshold for immature development was 13.3 °C, yielding an average of 207 day-degrees for the completion of development into adults. Juvenile mortality was high, varying from about 50% at 16 °C to about 30% at 22 °C and 28 °C.E. formosa preferred to oviposit in the 4th instar and prepupal stages ofB. tabaci followed by the 2nd and 3rd instars. The preference for the pupal stage was low. The parasitoid used all instars of the whitefly for hostfeeding, with no apparent differences between the stages. The average duration of the oviposition posture was four minutes. Demographic parameters were calculated from life tables constructed from the data. The intrinsic rate of increase (r m) and the net reproductive rate (R 0) increased with temperature from 0.0279 day−1 at 16 °C to 0.2388 day−1 at 28 °C and from about 12 at 16 °C to about 66 at 28 °C, respectively.  相似文献   

10.
Searching behaviour of two aphelinid parasitoids, Encarsia formosa Gahan and Eretmocerus eremicus Rose and Zolnerowich, was compared in a controlled environment under simulated summer [high light intensity (83 ± 1 W/m2), and 24 ± 1°C] and winter [low light intensity (11 ± 0.5 W/m2), and 20 ± 1°C] greenhouse conditions on tomato leaflets, with and without a single 3rd instar whitefly host, Trialeurodes vaporariorum (Westwood), within a 4-cm tomato leaflet arena. Residence time of both parasitoid species was longer on infested leaflets vs. clean leaflets, and longer under winter than summer conditions. When parasitoids encountered a host on infested leaflets, residence time increased. In all cases, residence time of E. formosa was longer that of E. eremicus. Proportion of time spent searching (i.e. antennating leaf surface while walking or standing still) was longer on clean vs. infested leaflets for both E. formosa and E. eremicus. Walking speed by E. eremicus on clean leaflets was faster than E. formosa under both summer and winter conditions. Host handling time and proportion of host acceptance did not vary among parasitoids. These findings suggest that E. eremicus could be more efficient in host finding on tomato leaflets than E. formosa over all seasons, especially in the winter when natural light is limiting and where daylight temperatures are ≥20°C.  相似文献   

11.
One of the factors that may complicate biological control of the greenhouse whitefly on Gerbera jamesonii by Encarsia formosa is the rosette shape of this ornamental, which differs from the vertical shape of most vegetable plants (cucumber, egg plant, tomato, etc.). Therefore, host-habitat location and the behaviour prior to landing on uninfested and infested leaves was studied. Attraction of E. formosa from a short distance by infested leaves could not be detected: the parasitoid females landed at random on uninfested and infested leaves. After the first landing, a redistribution of the wasps occurred on the leaves. After 24 h three times as many wasps were found on the infested leaves than on uninfested ones. In a dispersal experiment with four plants, E. formosa appeared to have no preference for landing on leaves of the medium age class, which is the age class on which most of the whiteflies in a suitable stage for parasitism occur. Twenty percent of the parasitoids were found on the plants 20 min after releasing them. These results were independent of the plant cultivar and the host density on the plants. In the course of 8 h, the number of E. formosa females recovered from plants increased linearly, and this increase was greater on plants where hosts were present and also greater on the plant cultivar with the lowest trichome density. After 24 h, the percentage of females was highest (56%) on plants with the highest host density. E. formosa females were arrested on leaves where hosts were present. Contrary to our expectation, the results from the two G. jamesonii cultivars that differed strongly in leaf hairiness were not significantly different in most experiments. Only at the high host density was parasitism found to be lower on the cultivar with the higher hair density. Parasitoids may walk on top of the `hair coverlet' of cultivars with high trichome density and, therefore, be hampered less than expected.  相似文献   

12.
The effects of the host plant on the level of parasitism, development time and mortality ofEncarsia formosa Gahan parasitizing castor whitefly,Trialeurodes ricini Misra were studied. The level of parasitism varied significantly between host plants; ranging from an average high of 13/50T. ricini larvae parasitized per parasitoid per day on aubergine to an average low of 1.6/50 host larvae on potato. Development time ofE. formosa varied according to whitefly host plant; minimum average development time was 17.7 days on cotton. The mortality ofE. formosa was high on all host plants tested, and the type of host plant had no significant influence on mortality. Aubergine proved to be the most satisfactory laboratory plant for rearingE. formosa onT. ricini.  相似文献   

13.
We tested the hypothesis that populations of the parthenogenetic parasitic wasp Encarsia formosa Gahan (Hymenoptera: Aphelinidae) differed in their ability to use two different host species, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) and Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae). Of the three wasp populations tested, two populations had been reared for many generations on B. tabaci and one population had been reared for many years on T. vaporariorum. Performance was measured by the number of whitefly nymphs that were successfully parasitized by individual wasps, and performance on either host was measured in separate experiments. There was variation between wasp populations in their performance on the host B. tabaci, with one wasp population reared for many years on this host performing considerably better than the other two populations. There were no significant differences between populations in their use of the preferred host, T. vaporariorum. The experiments were conducted in such a way that we could distinguish heritable differences between populations from environmentally-induced conditioning differences due to the immediate host from which an individual wasp enclosed. In either experiment there were no significant effects of conditioning, although there was a trend within each population for wasps conditioned on T. vaporariorum to have higher performance than those conditioned on B. tabaci. Thirdly, we conducted a selection experiment, initiated with wasps from a single population historically reared on T. vaporariorum, to measure the effect of laboratory rearing on different hosts for 17 generations. We did not see any difference in the performance of wasps on B. tabaci after this period of rearing on either of the two hosts. In summary, populations of E. formosa do differ in their relative performance on B. tabaci. The one population that was tested further did not show any response to selection by rearing, but the ability to respond to selection on performance may not be equal for all populations. The possibility that wasp populations have differential performance on particular hosts may affect the use of this species as a biological control agent.  相似文献   

14.
The effect of separate and combined activity of Paecilomyces fumosoroseus Wize (Brown and Smith) Trinidadian strain T11 and the parasitoid, Encarsia formosa Gahan, was assessed on populations of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood), infesting Phaseolus vulgaris L. (French bean) and Pelargonium x domesticum (regal geranium) plants in replicate experiments. When infested bean and geranium plants were exposed to E. formosa for 2 days, and 4 days later sprayed with P. fumosoroseus blastospores, whitefly percent mortality was 99.5% and 75.5%, 94.6% and 59.4% for experiments 1 and 2, respectively. Treatment of infested bean plants with either E. formosa or P. fumosoroseus resulted in 87.8% and 78.7%, 73.1% and 97.0% whitefly mortality for experiments 1 and 2, respectively, while similar treatment of infested geranium plants resulted in 9.2% and 52.8%, 34.3% and 64.5% whitefly mortality for experiments 1 and 2, respectively. Our results support the use of E. formosa and P. fumosoroseus in combination in Experiment 1 for the treatment of whitefly infested P. vulgaris plants since a significant difference in mortality is observed than when either E. formosa or P. fumosoroseus is applied alone. However, in experiment 2, the combination treatment on P. vulgaris was no more effective than spraying P. fumosoroseus alone. On P. x domesticum plants, only P. fumosoroseus alone is needed for efficient control of the whitefly compared to the combination treatment. The relative timing of parasitoid oviposition and fungal infection are critical in determining the outcome of the interaction and are plant host dependent.  相似文献   

15.
Encarsia tricolor Foërster is a facultative autoparasitoid that develops on the important pestTrialeurodes vaporariorum (Westwood) in outdoor crop conditions, which makes this aphelinid species promising for biological control programs in regions where field and protected crops coexist. In this paper we report the results obtained in the study of daily and totalE. tricolor egg laying and of adult female preference for different host stages in which to lay eggs at constant temperatures in the range 10 to 32 °C. Only whitefly nymphs were present in the searching arena (tomato leaflets). The mean number of eggs laid per female in one day ranged from 4.0 (10 °C and 32 °C) to 15.2 (24 °C). The mean total number of eggs increased with temperature from 10 to 28 °C, reaching a maximum of 123 eggs per female at 28 °C, and decreased sharply from 28 to 32 °C. The relation between the intrinsic rate of increase (rm) and temperature in the range 10 to 28 °C followed a straight line whose equation was rm=?0.076+0.011*T (R2=0.99). The rm ofE. tricolor was greater than the rm ofT. vaporariorum when temperature was higher than 9.2 °C. The preference for any particular host instar in which to lay eggs was not always significant. However, N4 was the host instar preferred whenever preference was statistically significant.  相似文献   

16.
Toxicity and behavioural bioassays were used to assess the lethal and sub-lethal effects of two naphthoquinones from the Chilean plant Calceolaria andina L. (Scrophulariaceae), two products derived from Azadirachta indica and pyrethrum on the glasshouse whitefly, Trialeurodes vaporariorum Westwood, and the parasitoid Encarsia formosa Gahan. The potential use of these botanicals in an Integrated Pest Management (IPM) programme is discussed. Pyrethrum was the most toxic botanical tested, but it was toxic to both the whitefly and parasitoid. The naphthoquinones showed potential for inclusion into an IPM programme if, by formulation, the toxicity towards the whitefly could be increased and the deterrent activity towards E. formosa adults decreased. Overall, the A. indica-derived products had the most potential for use in an IPM system for the control of whitefly, which includes E. formosa as a biocontrol agent.  相似文献   

17.
Oviposition preference and several measures of offspring performance of Helicoverpa armigera (Hübner) were investigated on a subset of its host plants that were selected for their reputed importance in the field in Australia. They included cotton, pigeon pea, sweet corn, mungbean, bean and common sowthistle. Plants were at their flowering stage when presented to gravid female moths. Flowering pigeon pea evoked far more oviposition than did the other plant species and was the most preferred plant for neonate larval feeding. It also supported development of the most robust larvae and pupae, and these produced the most fecund moths. Common sowthistle and cotton were equally suitable to pigeon pea for larval development, but these two species received far fewer H. armigera eggs than did pigeon pea. Mungbean also received relatively few eggs, but it did support intermediate measures of larval growth and survival. Fewest eggs were laid on bean and it was also the least beneficial in terms of larval growth. Among the host plant species tested, only flowering pigeon pea supported a good relationship between oviposition preference of H. armigera and its subsequent offspring performance. Australian H. armigera moths are thus consistent with Indian H. armigera moths in their ovipositional behaviour and larval performance relative to pigeon pea. The results suggest that the host recognition and acceptance behaviour of this species is fixed across its geographical distribution and they support the theory that pigeon pea might be one of the primary host plants of this insect. These insights, together with published results on the sensory responses of the females to volatiles derived from the different host plant species tested here, help to explain why some plant species are primary targets for the ovipositing moths whereas others are only secondary targets of this polyphagous pest, which has a notoriously broad host range. Handling Editor: Joseph Dickens  相似文献   

18.
The control efficiency and performance ofEncarsia formosa Gahan (Hymenoptera: Aphelinidae) as influenced by the density of its host, the Poinsettia-strain ofBemisia tabaci Gennadius (Homoptera: Aleyrodidae), were investigated by laboratory experiments on Poinsettia (Euphorbia pulcherrrima Willd.).E. formosa showed a Type II functional response to fourth instar larvae ofB. tabaci, the response plateau increasing with temperature. A response model for randomly searching parasitoids incorporating temperature-dependent handling time and temperature-independent search rate was in accordance with the results, and gave an estimated search rate of 0.033 leaf·hour−1 and handling times of 1.54, 2.86 and 20.1 h at 28°C, 22°C and 16°C, respectively. From the latter, the maximum number of hosts that can be parasitized at the three temperatures are 10.4, 5.6 and 0.8 larvae per day (provided the light period is 16 h). The number of hosts with ovipositor punctures was higher than the number of parasitized hosts, especially at 22°C and 28°C, implying thatE. formosa refrains from laying eggs in some of the hosts examined with the ovipositor. About 31% of the punctured larvae did not contain any eggs. Superparasitism occured during the experiment presumably originating from young, inexperienced parasitoids. Individual larvae were occasionally punctured several times, also by non-superparasitizingE. formosa. The resulting distribution of ovipositior holes was random, indicating thatE. formosa on the basis of antennal testing is unable to determine if a larva has previously been examined with the ovipositor. Almost fifty percent of the punctures were not followed by egg-depositions. Besides parasitizationE. formosa used hosts as food source. The number of hostfed larvae was independent of density, but varied with temperature being highest at 28°C (0.12 hostfed larvae per parasitoid per day).  相似文献   

19.
Encarsia tricolor is a facultative autoparasitoid of the glasshouse whitefly, Trialeurodes vaporariorum, with a potential in biological control. The rate of development, number of mature oocytes at emergence, number of ovarioles and size of the emerged adults were studied. Five nymphal instars (N1, N2, N3, N4, and pharate adult) of T. vaporariorum were used as hosts for the females. Female larvae and pupae of E. tricolor and Encarsia formosa were used as hosts for the males. Females developed faster when the egg was laid on N3 (18.0 days from egg to adult) and slower on N1 (22.3 days). Females were bigger when developing from N1 and N3 than from N4 and pharate adult. On emergence the mean number of mature oocytes was always small (0.8–2.6). Males developed faster and were smaller than females, and developed faster and were larger on larvae of E. formosa.  相似文献   

20.
We investigated the impact of inundative releases of the parasitoid, Encarsia formosa Gahan (Hymenoptera: Aphelinidae), for control of greenhouse whitefly, Trialeurodes vaporariorum (Westwood), on cut gerbera (Gerbera jamesonii L.) under controlled greenhouse conditions. Experimental units consisted of ten plants covered and separated from other units by gauze tents. We assessed three release rates of the aphelinid parasitoid: a 7-week experiment with a standard release rate (10 m−2/14 days), and a subsequent 3-month trial with high (100 m−2/week) and very high (1,000 m−2/week) release rates. Experimental units without release of parasitoids served as control treatment. Gerbera plants were infested initially with 50–100 juvenile and 50–70 adult whiteflies in the first experiment, and in the second experiment with less than 50 juveniles per plant and 50–70 adults. Whitefly and parasitoid population density were assessed in weekly intervals using infestation and activity categories. Results show that parasitized whiteflies were present in all treatments within 2 weeks after initial release. Unfortunately, it was not possible to control whiteflies with standard release rates of E. formosa. Although parasitism rates slightly increased, the effect on whitefly populations was negligible. Large amounts of honeydew and growth of sooty mold fungi caused the termination of the first experiment. In a second experiment, E. formosa was tested at 10–100 times higher release densities. In contrast to the first experiment, whitefly densities increased steadily during the first 8 weeks, but remained constant until the end of the experiment in both treatments. Parasitism by E. formosa reached its maximum after 8 weeks. We discuss possible reasons for the low efficiency of E. formosa as a whitefly antagonist in greenhouse production of gerbera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号