首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survival of Pseudomonas aeruginosa in cystic fibrosis (CF) chronic infections is based on a genetic adaptation process consisting of mutations in specific genes, which can produce advantageous phenotypic switches and ensure its persistence in the lung. Among these, mutations inactivating the regulators MucA (alginate biosynthesis), LasR (quorum sensing) and MexZ (multidrug-efflux pump MexXY) are the most frequently observed, with those inactivating the DNA mismatch repair system (MRS) being also highly prevalent in P. aeruginosa CF isolates, leading to hypermutator phenotypes that could contribute to this adaptive mutagenesis by virtue of an increased mutation rate. Here, we characterized the mutations found in the mucA, lasR, mexZ and MRS genes in P. aeruginosa isolates obtained from Argentinean CF patients, and analyzed the potential association of mucA, lasR and mexZ mutagenesis with MRS-deficiency and antibiotic resistance. Thus, 38 isolates from 26 chronically infected CF patients were characterized for their phenotypic traits, PFGE genotypic patterns, mutations in the mucA, lasR, mexZ, mutS and mutL gene coding sequences and antibiotic resistance profiles. The most frequently mutated gene was mexZ (79%), followed by mucA (63%) and lasR (39%) as well as a high prevalence (42%) of hypermutators being observed due to loss-of-function mutations in mutL (60%) followed by mutS (40%). Interestingly, mutational spectra were particular to each gene, suggesting that several mechanisms are responsible for mutations during chronic infection. However, no link could be established between hypermutability and mutagenesis in mucA, lasR and mexZ, indicating that MRS-deficiency was not involved in the acquisition of these mutations. Finally, although inactivation of mucA, lasR and mexZ has been previously shown to confer resistance/tolerance to antibiotics, only mutations in MRS genes could be related to an antibiotic resistance increase. These results help to unravel the mutational dynamics that lead to the adaptation of P. aeruginosa to the CF lung.  相似文献   

2.
Chronic respiratory infection by Pseudomonas aeruginosa is a major cause of mortality in cystic fibrosis (CF). We investigated the interplay between three key microbiological aspects of these infections: the occurrence of transmissible and persistent strains, the emergence of variants with enhanced mutation rates (mutators) and the evolution of antibiotic resistance. For this purpose, 10 sequential isolates, covering up to an 8-year period, from each of 10 CF patients were studied. As anticipated, resistance significantly accumulated overtime, and occurred more frequently among mutator variants detected in 6 of the patients. Nevertheless, highest resistance was documented for the nonmutator CF epidemic strain LES-1 (ST-146) detected for the first time in Spain. A correlation between resistance profiles and resistance mechanisms evaluated [efflux pump (mexB, mexD, mexF, and mexY) and ampC overexpression and OprD production] was not always obvious and hypersusceptibility to certain antibiotics (such as aztreonam or meropenem) was frequently observed. The analysis of whole genome macrorestriction fragments through Pulsed-Field Gel Electrophoresis (PFGE) revealed that a single genotype (clone FQSE-A) produced persistent infections in 4 of the patients. Multilocus Sequence typing (MLST) identified clone FQSE-A as the CF epidemic clone ST-274, but striking discrepancies between PFGE and MLST profiles were evidenced. While PFGE macrorestriction patterns remained stable, a new sequence type (ST-1089) was detected in two of the patients, differing from ST-274 by only two point mutations in two of the genes, each leading to a nonpreviously described allele. Moreover, detailed genetic analyses revealed that the new ST-1089 is a mutS deficient mutator lineage that evolved from the epidemic strain ST-274, acquired specific resistance mechanisms, and underwent further interpatient spread. Thus, presented results provide the first evidence of interpatient dissemination of mutator lineages and denote their potential for unexpected short-term sequence type evolution, illustrating the complexity of P. aeruginosa population biology in CF.  相似文献   

3.
The advent of high-throughput sequencing techniques has made it possible to follow the genomic evolution of pathogenic bacteria by comparing longitudinally collected bacteria sampled from human hosts. Such studies in the context of chronic airway infections by Pseudomonas aeruginosa in cystic fibrosis (CF) patients have indicated high bacterial population diversity. Such diversity may be driven by hypermutability resulting from DNA mismatch repair system (MRS) deficiency, a common trait evolved by P. aeruginosa strains in CF infections. No studies to date have utilized whole-genome sequencing to investigate within-host population diversity or long-term evolution of mutators in CF airways. We sequenced the genomes of 13 and 14 isolates of P. aeruginosa mutator populations from an Argentinian and a Danish CF patient, respectively. Our collection of isolates spanned 6 and 20 years of patient infection history, respectively. We sequenced 11 isolates from a single sample from each patient to allow in-depth analysis of population diversity. Each patient was infected by clonal populations of bacteria that were dominated by mutators. The in vivo mutation rate of the populations was ∼100 SNPs/year–∼40-fold higher than rates in normo-mutable populations. Comparison of the genomes of 11 isolates from the same sample showed extensive within-patient genomic diversification; the populations were composed of different sub-lineages that had coexisted for many years since the initial colonization of the patient. Analysis of the mutations identified genes that underwent convergent evolution across lineages and sub-lineages, suggesting that the genes were targeted by mutation to optimize pathogenic fitness. Parallel evolution was observed in reduction of overall catabolic capacity of the populations. These findings are useful for understanding the evolution of pathogen populations and identifying new targets for control of chronic infections.  相似文献   

4.
Pseudomonas aeruginosa is an opportunistic pathogen that chronically infects the airways of cystic fibrosis (CF) patients and undergoes a process of genetic adaptation based on mutagenesis. We evaluated the role of mononucleotide G:C and A:T simple sequence repeats (SSRs) in this adaptive process. An in silico survey of the genome sequences of 7 P. aeruginosa strains showed that mononucleotide G:C SSRs but not A:T SSRs were greatly under-represented in coding regions, suggesting a strong counterselection process for G:C SSRs with lengths >5 bp but not for A:T SSRs. A meta-analysis of published whole genome sequence data for a P. aeruginosa strain from a CF patient with chronic airway infection showed that G:C SSRs but not A:T SSRs were frequently mutated during the infection process through the insertion or deletion of one or more SSR subunits. The mutation tendency of G:C SSRs was length-dependent and increased exponentially as a function of SSR length. When this strain naturally became a stable Mismatch Repair System (MRS)-deficient mutator, the degree of increase of G:C SSRs mutations (5-fold) was much higher than that of other types of mutation (2.2-fold or less). Sequence analysis of several mutated genes reported for two different collections, both containing mutator and non-mutator strains of P. aeruginosa from CF chronic infections, showed that the proportion of G:C SSR mutations was significantly higher in mutators than in non-mutators, whereas no such difference was observed for A:T SSR mutations. Our findings, taken together, provide genome-scale evidences that under a MRS-deficient background, long G:C SSRs are able to stochastically bias mutagenic pathways by making the genes in which they are harbored more prone to mutation. The combination of MRS deficiency and virulence-related genes that contain long G:C SSRs is therefore a matter of concern in P. aeruginosa CF chronic infection.  相似文献   

5.

Objective

To determine whether highly prevalent P. aeruginosa sequence types (ST) in Dutch cystic fibrosis (CF) patients are specifically linked to CF patients we investigated the population structure of P. aeruginosa from different clinical backgrounds. We first selected the optimal genotyping method by comparing pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and multilocus variable number tandem-repeat analysis (MLVA).

Methods

Selected P. aeruginosa isolates (n = 60) were genotyped with PFGE, MLST and MLVA to determine the diversity index (DI) and congruence (adjusted Rand and Wallace coefficients). Subsequently, isolates from patients admitted to two different ICUs (n = 205), from CF patients (n = 100) and from non-ICU, non-CF patients (n = 58, of which 19 were community acquired) were genotyped with MLVA to determine distribution of genotypes and genetic diversity.

Results

Congruence between the typing methods was >79% and DIs were similar and all >0.963. Based on costs, ease, speed and possibilities to compare results between labs an adapted MLVA scheme called MLVA9-Utrecht was selected as the preferred typing method. In 363 clinical isolates 252 different MLVA types (MTs) were identified, indicating a highly diverse population (DI  = 0.995; CI  = 0.993–0.997). DI levels were similarly high in the diverse clinical sources (all >0.981) and only eight genotypes were shared. MTs were highly specific (>80%) for the different patient populations, even for similar patient groups (ICU patients) in two distinct geographic regions, with only three of 142 ICU genotypes detected in both ICUs. The two major CF clones were unique to CF patients.

Conclusion

The population structure of P. aeruginosa isolates is highly diverse and population specific without evidence for a core lineage in which major CF, hospital or community clones co-cluster. The two genotypes highly prevalent among Dutch CF patients appeared unique to CF patients, suggesting specific adaptation of these clones to the CF lung.  相似文献   

6.
7.
Cystic fibrosis (CF) patients suffer from chronic bacterial lung infections, most notably by Pseudomonas aeruginosa, which persists for decades in the lungs and undergoes extensive evolution. P. aeruginosa requires iron for virulence and uses the fluorescent siderophore pyoverdine to scavenge and solubilize ferric iron during acute infections. Pyoverdine mutants accumulate in the lungs of some CF patients, however, suggesting that the heme and ferrous iron acquisition pathways of P. aeruginosa are more important in this environment. Here, we sought to determine how evolution of P. aeruginosa in the CF lung affects iron acquisition and regulatory pathways through the use of longitudinal CF isolates. These analyses demonstrated a significant reduction of siderophore production during the course of CF lung infection in nearly all strains tested. Mass spectrometry analysis of one of these strains showed that the later CF isolate has streamlined the metabolic flux of extracellular heme through the HemO heme oxygenase, resulting in more-efficient heme utilization. Moreover, gene expression analysis shows that iron regulation via the PrrF small RNAs (sRNAs) is enhanced in the later CF isolate. Finally, analysis of P. aeruginosa gene expression in the lungs of various CF patients demonstrates that both PrrF and HemO are consistently expressed in the CF lung environment. Combined, these results suggest that heme is a critical source of iron during prolonged infection of the CF lung and that changes in iron and heme regulatory pathways play a crucial role in adaptation of P. aeruginosa to this ever-changing host environment.  相似文献   

8.
9.
Pseudomonas aeruginosa is a common respiratory pathogen in cystic fibrosis (CF) patients which undergoes adaptations during chronic infection towards reduced virulence, which can facilitate bacterial evasion of killing by host cells. However, inflammatory cytokines are often found to be elevated in CF patients, and it is unknown how chronic P. aeruginosa infection can be paradoxically associated with both diminished virulence in vitro and increased inflammation and disease progression. Thus, we investigated the relationship between the stimulation of inflammatory cell death pathways by CF P. aeruginosa respiratory isolates and the expression of key inflammatory cytokines. We show that early respiratory isolates of P. aeruginosa from CF patients potently induce inflammasome signaling, cell death, and expression of IL-1β by macrophages, yet little expression of other inflammatory cytokines (TNF, IL-6 and IL-8). In contrast, chronic P. aeruginosa isolates induce relatively poor macrophage inflammasome signaling, cell death, and IL-1β expression but paradoxically excessive production of TNF, IL-6 and IL-8 compared to early P. aeruginosa isolates. Using various mutants of P. aeruginosa, we show that the premature cell death of macrophages caused by virulent bacteria compromises their ability to express cytokines. Contrary to the belief that chronic P. aeruginosa isolates are less pathogenic, we reveal that infections with chronic P. aeruginosa isolates result in increased cytokine induction due to their failure to induce immune cell death, which results in a relatively intense inflammation compared with early isolates.Subject terms: Cell death, Immune cell death  相似文献   

10.
Pseudomonas aeruginosa and Staphylococcus aureus are the most prevalent pathogens in airway infections of cystic fibrosis (CF) patients. We studied how these pathogens coexist and interact with each other. Clinical isolates of both species were retrieved from adult CF patients. Culture supernatants from 63 P. aeruginosa isolates triggered a wide range of biofilm-stimulatory activities when added to the culture of a control S. aureus strain. The extent of biofilm formation by S. aureus was positively correlated to the levels of the 2-alkyl-4-(1H)-quinolones (AQs) Pseudomonas Quinolone Signal (PQS) and 2-heptyl-4-hydroxy quinoline N-oxide (HQNO) produced by the P. aeruginosa isolates. Supernatants from P. aeruginosa isogenic mutants deficient in PQS and HQNO production stimulated significantly less biofilm formation by S. aureus than that seen with the parental strain PA14. When studying co-isolated pairs of P. aeruginosa and S. aureus retrieved from patients showing both pathogens, P. aeruginosa supernatants stimulated less biofilm production by the S. aureus counterparts compared to that observed using the control S. aureus strain. Accordingly, some P. aeruginosa isolates produced low levels of exoproducts and also some of the clinical S. aureus isolates were not stimulated by their co-isolates or by PA14 despite adequate production of HQNO. This suggests that colonization of the CF lungs promotes some type of strain selection, or that co-existence requires specific adaptations by either or both pathogens. Results provide insights on bacterial interactions in CF.  相似文献   

11.

Background

Chronic lung infection with the bacterium Pseudomonas aeruginosa is one of the hallmarks of cystic fibrosis (CF) and is associated with worsening lung function, increased hospitalisation and reduced life expectancy. A virulent clonal strain of P. aeruginosa (Australian epidemic strain I; AES-I) has been found to be widespread in CF patients in eastern Australia.

Methods

Suppression subtractive hybridization (SSH) was employed to identify genetic sequences that are present in the AES-I strain but absent from the sequenced reference strain PAO1. We used PCR to evaluate the distribution of several of the AES-I loci amongst a collection of 188 P. aeruginosa isolates which was comprised of 35 AES-I isolates (as determined by PFGE), 78 non-AES-I CF isolates including other epidemic CF strains as well as 69 P. aeruginosa isolates from other clinical and environmental sources.

Results

We have identified a unique AES-I genetic locus that is present in all 35 AES-I isolates tested and not present in any of the other 153 P. aeruginosa strains examined. We have used this unique AES-I locus to develop a diagnostic PCR and a real-time PCR assay to detect the presence of P. aeruginosa and AES-I in patient sputum samples.

Conclusions

We have developed diagnostic PCR assays that are 100% sensitive and 100% specific for the P. aeruginosa strain AES-I. We have also shown that Whatman FTA® Elute cards may be used with PCR-based assays to rapidly detect the presence of P. aeruginosa strains in CF sputum.  相似文献   

12.
Pseudomonas aeruginosa is the most common pathogen for chronic lung infection in cystic fibrosis (CF) patients. About 80% of adult CF patients have chronic P. aeruginosa infection, which accounts for much of the morbidity and most of the mortality. Both bacterial genetic adaptations and defective innate immune responses contribute to the bacteria persistence. It is well accepted that CF transmembrane conductance regulator (CFTR) dysfunction impairs the airways-epithelium-mediated lung defence; however, other innate immune cells also appear to be affected, such as neutrophils and macrophages, which thus contribute to this infectious pathology in the CF lung. In macrophages, the absence of CFTR has been linked to defective P. aeruginosa killing, increased pro-inflammatory cytokine secretion, and reduced reactive oxygen species (ROS) production. To learn more about macrophage dysfunction in CF patients, we investigated the generation of the oxidative burst and its impact on bacterial killing in CF macrophages isolated from peripheral blood or lung parenchyma of CF patients, after P. aeruginosa infection. Our data demonstrate that CF macrophages show an oxidative response of similar intensity to that of non-CF macrophages. Intracellular ROS are recognized as one of the earliest microbicidal mechanisms against engulfed pathogens that are activated by macrophages. Accordingly, NADPH inhibition resulted in a significant increase in the intracellular bacteria survival in CF and non-CF macrophages, both as monocyte-derived macrophages and as lung macrophages. These data strongly suggest that the contribution of ROS to P. aeruginosa killing is not affected by CFTR mutations.  相似文献   

13.
Chronic polymicrobial lung infections in adult cystic fibrosis patients are typically dominated by high levels of Pseudomonas aeruginosa. Determining the impact of P. aeruginosa growth on airway secretion composition is fundamental to understanding both the behaviour of this pathogen in vivo, and its relationship with other potential colonising species. We hypothesised that the marked differences in the phenotypes of clinical isolates would be reflected in the metabolite composition of spent culture media. 1H NMR spectroscopy was used to characterise the impact of P. aeruginosa growth on a synthetic medium as part of an in vitro CF lower airways model system. Comparisons of 15 CF clinical isolates were made and four distinct metabolomic clusters identified. Highly significant relationships between P. aeruginosa isolate cluster membership and both patient lung function (FEV1) and spent culture pH were identified. This link between clinical isolate growth behaviour and FEV1 indicates characterisation of P. aeruginosa growth may find application in predicting patient lung function while the significant divergence in metabolite production and consumption observed between CF clinical isolates suggests dominant isolate characteristics have the potential to play both a selective role in microbiota composition and influence pseudomonal behaviour in vivo.  相似文献   

14.
Chronic bacterial lung infections in cystic fibrosis (CF) are the leading cause of morbidity and mortality. While a range of bacteria are known to be capable of establishing residence in the CF lung, only a small number have a clearly established link to deteriorating clinical status. The two bacteria with the clearest roles in CF lung disease are Pseudomonas aeruginosa and bacteria belonging to the Burkholderia cepacia complex (BCC). A number of common adaptations by P. aeruginosa strains to chronic lung infection in CF have been well described. Typically, initial isolates of P. aeruginosa are nonmucoid and display a range of putative virulence determinants. Upon establishment of chronic infection, subsequent isolates ultimately show a reduction in putative virulence determinants, including swimming motility, along with an acquisition of the mucoid phenotype and increased levels of antimicrobial resistance. Infections by BCC are marked by an unpredictable, but typically worse, clinical outcome. However, in contrast to P. aeruginosa infections in CF, studies describing adaptive changes in BCC bacterial phenotype during chronic lung infections are far more limited. To further enhance our understanding of chronic lung infections by BCC bacteria in CF, we assessed the swimming motility phenotype in 551 isolates of BCC bacteria from cystic fibrosis (CF) lung infections between 1981 and 2007. These data suggest that swimming motility is not typically lost by BCC during chronic infection, unlike as seen in P. aeruginosa infections. Furthermore, while we observed a statistically significant link between mucoidy and motility, we did not detect any link between motility phenotype and clinical outcome. These studies highlight the need for further work to understand the adaptive changes of BCC bacteria during chronic infection in the CF lung.  相似文献   

15.
The genetic adaptation of pathogens in host tissue plays a key role in the establishment of chronic infections. While whole genome sequencing has opened up the analysis of genetic changes occurring during long-term infections, the identification and characterization of adaptive traits is often obscured by a lack of knowledge of the underlying molecular processes. Our research addresses the role of Pseudomonas aeruginosa small colony variant (SCV) morphotypes in long-term infections. In the lungs of cystic fibrosis patients, the appearance of SCVs correlates with a prolonged persistence of infection and poor lung function. Formation of P. aeruginosa SCVs is linked to increased levels of the second messenger c-di-GMP. Our previous work identified the YfiBNR system as a key regulator of the SCV phenotype. The effector of this tripartite signaling module is the membrane bound diguanylate cyclase YfiN. Through a combination of genetic and biochemical analyses we first outline the mechanistic principles of YfiN regulation in detail. In particular, we identify a number of activating mutations in all three components of the Yfi regulatory system. YfiBNR is shown to function via tightly controlled competition between allosteric binding sites on the three Yfi proteins; a novel regulatory mechanism that is apparently widespread among periplasmic signaling systems in bacteria. We then show that during long-term lung infections of CF patients, activating mutations invade the population, driving SCV formation in vivo. The identification of mutational “scars” in the yfi genes of clinical isolates suggests that Yfi activity is both under positive and negative selection in vivo and that continuous adaptation of the c-di-GMP network contributes to the in vivo fitness of P. aeruginosa during chronic lung infections. These experiments uncover an important new principle of in vivo persistence, and identify the c-di-GMP network as a valid target for novel anti-infectives directed against chronic infections.  相似文献   

16.
The metabolically versatile Pseudomonas aeruginosa inhabits biotic and abiotic environments including the niche of cystic fibrosis (CF) airways. This study investigated how the adaptation to CF lungs affects the within-clone fitness of P. aeruginosa to grow and persist in liquid cultures in the presence of the clonal ancestors. Longitudinal clonal P. aeruginosa isolates that had been collected from 12 CF donors since the onset of colonization for up to 30 years was subjected to within-clone competition experiments. The relative quantities of individual strains were determined by marker-free amplicon sequencing of multiplex PCR products of strain-specific nucleotide sequence variants, a novel method that is generally applicable to studies in evolutionary genetics and microbial ecology with real-world strain collections. For 10 of the 12 examined patient courses, P. aeruginosa isolates of the first years of colonization grew faster in the presence of their clonal progeny than alone. Single growth of individual strains showed no temporal trend with colonization time, but in co-culture, the early isolates out-competed their clonal progeny. Irrespective of the genetic make-up of the clone and its genomic microevolution in CF lungs, the early isolates expressed fitness traits to win the within-clone competition that were absent in their progeny.  相似文献   

17.
Pseudomonas aeruginosa is the predominant microorganism in chronic lung infection of cystic fibrosis patients. The chronic lung infection is preceded by intermittent colonization. When the chronic infection becomes established, it is well accepted that the isolated strains differ phenotypically from the intermittent strains. Dominating changes are the switch to mucoidity (alginate overproduction) and loss of epigenetic regulation of virulence such as the Quorum Sensing (QS). To elucidate the dynamics of P. aeruginosa QS systems during long term infection of the CF lung, we have investigated 238 isolates obtained from 152 CF patients at different stages of infection ranging from intermittent to late chronic. Isolates were characterized with regard to QS signal molecules, alginate, rhamnolipid and elastase production and mutant frequency. The genetic basis for change in QS regulation were investigated and identified by sequence analysis of lasR, rhlR, lasI and rhlI. The first QS system to be lost was the one encoded by las system 12 years (median value) after the onset of the lung infection with subsequent loss of the rhl encoded system after 17 years (median value) shown as deficiencies in production of the 3-oxo-C12-HSL and C4-HSL QS signal molecules respectively. The concomitant development of QS malfunction significantly correlated with the reduced production of rhamnolipids and elastase and with the occurrence of mutations in the regulatory genes lasR and rhlR. Accumulation of mutations in both lasR and rhlR correlated with development of hypermutability. Interestingly, a higher number of mucoid isolates were found to produce C4-HSL signal molecules and rhamnolipids compared to the non-mucoid isolates. As seen from the present data, we can conclude that P. aeruginosa and particularly the mucoid strains do not lose the QS regulation or the ability to produce rhamnolipids until the late stage of the chronic infection.  相似文献   

18.
In cystic fibrosis (CF), Pseudomonas aeruginosa undergoes intra-strain genotypic and phenotypic diversification while establishing and maintaining chronic lung infections. As the clinical significance of these changes is uncertain, we investigated intra-strain diversity in commonly shared strains from CF patients to determine if specific gene mutations were associated with increased antibiotic resistance and worse clinical outcomes. Two-hundred-and-one P. aeruginosa isolates (163 represented a dominant Australian shared strain, AUST-02) from two Queensland CF centres over two distinct time-periods (2001–2002 and 2007–2009) underwent mexZ and lasR sequencing. Broth microdilution antibiotic susceptibility testing in a subset of isolates was also performed. We identified a novel AUST-02 subtype (M3L7) in adults attending a single Queensland CF centre. This M3L7 subtype was multi-drug resistant and had significantly higher antibiotic minimum inhibitory concentrations than other AUST-02 subtypes. Prospective molecular surveillance using polymerase chain reaction assays determined the prevalence of the ‘M3L7’ subtype at this centre during 2007–2009 (170 patients) and 2011 (173 patients). Three-year clinical outcomes of patients harbouring different strains and subtypes were compared. MexZ and LasR sequences from AUST-02 isolates were more likely in 2007–2009 than 2001–2002 to exhibit mutations (mexZ: odds ratio (OR) = 3.8; 95% confidence interval (CI): 1.1–13.5 and LasR: OR = 2.5; 95%CI: 1.3–5.0). Surveillance at the adult centre in 2007–2009 identified M3L7 in 28/509 (5.5%) P. aeruginosa isolates from 13/170 (7.6%) patients. A repeat survey in 2011 identified M3L7 in 21/519 (4.0%) P. aeruginosa isolates from 11/173 (6.4%) patients. The M3L7 subtype was associated with greater intravenous antibiotic and hospitalisation requirements, and a higher 3-year risk of death/lung transplantation, than other AUST-02 subtypes (adjusted hazard ratio [HR] = 9.4; 95%CI: 2.2–39.2) and non-AUST-02 strains (adjusted HR = 4.8; 95%CI: 1.4–16.2). This suggests ongoing microevolution of the shared CF strain, AUST-02, was associated with an emerging multi-drug resistant subtype and possibly poorer clinical outcomes.  相似文献   

19.
There is an increasing appreciation of the polymicrobial nature of many bacterial infections such as those associated with cystic fibrosis (CF) and of the potentially important role for interspecies interactions in influencing both bacterial virulence and response to therapy. Patients with CF are often co-infected with Pseudomonas aeruginosa and other pathogens including Burkholderia cenocepacia and Stenotrophomonas maltophilia. These latter bacteria produce signal molecules of the diffusible signal factor (DSF) family, which are cis-2-unsaturated fatty acids. We have previously shown by in vitro studies that DSF from S. maltophilia leads to altered biofilm formation and increased resistance to antibiotics by P. aeruginosa; these responses of P. aeruginosa require the sensor kinase PA1396. Here we show that DSF signals are present in sputum taken from patients with CF. Presence of these DSF signals was correlated with patient colonization by S. maltophilia and/or B. cenocepacia. Analysis of 50 clinical isolates of P. aeruginosa showed that each responded to the presence of synthetic DSF by increased antibiotic resistance and these strains demonstrated little sequence variation in the PA1396 gene. In animal experiments using CF transmembrane conductance regulator knockout mice, the presence of DSF promoted P. aeruginosa persistence. Furthermore, antibiotic resistance of P. aeruginosa biofilms grown on human airway epithelial cells was enhanced in the presence of DSF. Taken together, these data provide substantial evidence that interspecies DSF-mediated bacterial interactions occur in the CF lung and may influence the efficacy of antibiotic treatment, particularly for chronic infections involving persistence of bacteria.  相似文献   

20.
Streptococcus agalactiae is a well-known pathogen for neonates and immunocompromized adults. Beyond the neonatal period, S. agalactiae is rarely found in the respiratory tract. During 2002–2008 we noticed S. agalactiae in respiratory secretions of 30/185 (16%) of cystic fibrosis (CF) patients. The median age of these patients was 3–6 years older than the median age CF patients not harboring S. agalactiae. To analyze, if the S. agalactiae isolates from CF patients were clonal, further characterization of the strains was achieved by capsular serotyping, surface protein determination and multilocus sequence typing (MLST). We found a variety of sequence types (ST) among the isolates, which did not substantially differ from the MLST patterns of colonizing strains from Germany. However serotype III, which is often seen in colonizing strains and invasive infections was rare among CF patients. The emergence of S. agalactiae in the respiratory tract of CF patients may represent the adaptation to a novel host environment, supported by the altered surfactant composition in older CF patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号