首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD40, 4-1BB, and OX40 are costimulatory molecules belonging to the TNF/nerve growth factor superfamily of receptors. We examined whether simultaneous costimulation affected the responses of T cells using several different in vivo tracking models in mice. We show that enforced dual costimulation through 4-1BB and OX40, but not through CD40, induced profound specific CD8 T cell clonal expansion. In contrast, the response of specific CD4 T cells to dual costimulation was additive rather than synergistic. The synergistic response of the specific CD8 T cells persevered for several weeks, and the expanded effector cells resided throughout lymphoid and nonlymphoid tissue. Dual costimulation through 4-1BB and OX40 did not increase BrdU incorporation nor an increase in the number of rounds of T cell division in comparison to single costimulators, but rather enhanced accumulation in a cell-intrinsic manner. Mechanistically speaking, we show that CD8 T cell clonal expansion and effector function did not require T help, but accumulation in (non)lymphoid tissue was predominantly CD4 T cell dependent. To determine whether this approach would be useful in a physiological setting, we demonstrated that dual costimulation mediated rejection of an established murine sarcoma. Importantly, effector function directed toward established tumors was CD8 T cell dependent while being entirely CD4 T cell independent, and the timing of enforced dual costimulation was exquisitely regulated. Collectively, these data suggest that simultaneous dual costimulation through 4-1BB and OX40 induces a massive burst of CD8 T cell effector function sufficient to therapeutically treat established tumors even under immunocompromising conditions.  相似文献   

2.
CD28-independent costimulation of T cells in alloimmune responses.   总被引:15,自引:0,他引:15  
T cell costimulation by B7 molecules plays an important role in the regulation of alloimmune responses. Although both B7-1 and B7-2 bind CD28 and CTLA-4 on T cells, the role of B7-1 and B7-2 signaling through CTLA-4 in regulating alloimmune responses is incompletely understood. To address this question, we transplanted CD28-deficient mice with fully allogeneic vascularized cardiac allografts and studied the effect of selective blockade of B7-1 or B7-2. These mice reject their grafts by a mechanism that involves both CD4(+) and CD8(+) T cells. Blockade of CTLA-4 or B7-1 significantly accelerated graft rejection. In contrast, B7-2 blockade significantly prolonged allograft survival and, unexpectedly, reversed the acceleration of graft rejection caused by CTLA-4 blockade. Furthermore, B7-2 blockade prolonged graft survival in recipients that were both CD28 and CTLA-4 deficient. Our data indicate that B7-1 is the dominant ligand for CTLA-4-mediated down-regulation of alloimmune responses in vivo and suggest that B7-2 has an additional receptor other than CD28 and CTLA-4 to provide a positive costimulatory signal for T cells.  相似文献   

3.
Although CD4 cells are major mediators in cellular rejection of fetal pig pancreas (FPP) in the mouse, rejection still occurs in the absence of CD4 cells, albeit with delayed kinetics. CD4 cell-independent mechanisms of cellular rejection are poorly understood. To investigate the involvement of CD8 T cells in FPP rejection and their activation requirements, we used mice transgenic for anti-CD4 Ab; this is the most complete model of CD4 cell deficiency. We showed that in such mice FPP was infiltrated with CD8 cells starting from 2 wk posttransplantation and FPP was eventually rejected 8 wk posttransplantation. Ab depletion of CD8 cells greatly improved the survival of FPP and reduced cell infiltration at the graft site. This suggests that CD8 cells can mediate the rejection of porcine xenografts in the absence of CD4 cells. This CD8-mediated rejection of FPP is independent of their perforin-mediated lytic function, as graft survival was not affected in mice deficient in perforin. The production of IFN-gamma and IL-5 by the graft infiltrates indicates that CD8 cells may act through cytokine-mediated mechanisms. Remarkably, in the absence of CD4 cells, lymphocyte infiltration at the graft site was absent in mice transgenic for CTLA4Ig such that the islet grafts flourished beyond 24 wk. In contrast, rejection was little affected by CD40 ligand deficiency. Therefore, we show that CD8 cells are activated to mediate FPP rejection independent of perforin and that this CD4-independent activation of CD8 cells critically depends on B7/CD28 costimulation.  相似文献   

4.
Critical role of OX40 in CD28 and CD154-independent rejection   总被引:20,自引:0,他引:20  
Blocking both CD28 and CD154 costimulatory pathways can induce transplant tolerance in some, but not all, transplant models. Under stringent conditions, however, this protocol often completely fails to block allograft rejection. The precise nature of such CD28/CD154 blockade-resistant rejection is largely unknown. In the present study we developed a new model in which both CD28 and CD154, two conventional T cell costimulatory molecules, are genetically knocked out (i.e., CD28/CD154 double-knockout (DKO) mice) and used this model to examine the role of novel costimulatory molecule-inducible costimulator (ICOS), OX40, 4-1BB, and CD27 in mediating CD28/CD154-independent rejection. We found that CD28/CD154 DKO mice vigorously rejected fully MHC-mismatched DBA/2 skin allografts (mean survival time, 12 days; n = 6) compared with the wild-type controls (mean survival time, 8 days; n = 7). OX40 costimulation is critically important in skin allograft rejection in this model, as blocking the OX40/OX40 ligand pathway, but not the ICOS/ICOS ligand, 4-1BB/4-1BBL, or CD27/CD70 pathway, markedly prolonged skin allograft survival in CD28/CD154 DKO mice. The critical role of OX40 costimulation in CD28/CD154-independent rejection is further confirmed in wild-type C57BL/6 mice, as blocking the OX40/OX40 ligand pathway in combination with CD28/CD154 blockade induced long term skin allograft survival (>100 days; n = 5). Our study revealed a key cellular mechanism of rejection and identified OX40 as a critical alternative costimulatory molecule in CD28/CD154-independent rejection.  相似文献   

5.
6.
Blocking the CD28/B7 and/or CD154/CD40 costimulatory pathways promotes long-term allograft survival in many transplant models where CD4(+) T cells are necessary for rejection. When CD8(+) T cells are sufficient to mediate rejection, these approaches fail, resulting in costimulation blockade-resistant rejection. To address this problem we examined the role of lymphotoxin-related molecules in CD8(+) T cell-mediated rejection of murine intestinal allografts. Targeting membrane lymphotoxin by means of a fusion protein, mAb, or genetic mutation inhibited rejection of intestinal allografts by CD8(+) T cells. This effect was associated with decreased monokine induced by IFN-gamma (Mig) and secondary lymphoid chemokine (SLC) gene expression within allografts and spleens respectively. Blocking membrane lymphotoxin did not inhibit rejection mediated by CD4(+) T cells. Combining disruption of membrane lymphotoxin and treatment with CTLA4-Ig inhibited rejection in wild-type mice. These data demonstrate that membrane lymphotoxin is an important regulatory molecule for CD8(+) T cells mediating rejection and suggest a strategy to avoid costimulation blockade-resistant rejection.  相似文献   

7.
B7-1 and B7-2 are important costimulatory molecules in the activation of T cell immunity. We have used mice made genetically deficient in either or both B7 molecules to determine the role of B7 molecules in activation of primary alloreactive CTL. The absence of either B7-1 or B7-2 did not alter generation of CTL from unfractionated lymphocytes, but the absence of B7-2 greatly decreased CTL generation from purified CD8+ responder cells. However, if B7-1 was induced on the stimulating cells then CTL generation was restored to wild-type levels. Absence of both B7-1 and B7-2 from MLR using whole splenocytes resulted in a profound reduction in generation of CTL. This could completely be reversed by the addition of IL-2. B7 molecules could directly costimulate CD8+ cells, as purified CD8+ cells developed into mature CTL when stimulated with wild-type APC, but not with B7-deficient APC. Again, IL-2 could drive CTL generation from purified CD8+ cells, even in the absence of B7 molecules. Taken together, these results demonstrate an important role for B7 costimulation in CTL generation.  相似文献   

8.
Rejection of mouse cardiac allografts by costimulation in trans   总被引:5,自引:0,他引:5  
The activation of T cells by B7 costimulation in trans has been demonstrated in vitro, but the in vivo relevance is unknown. To study costimulation in trans of CD4(+) T cells in vivo, we performed cardiac transplants from B7-1/B7-2-deficient mice to recipients that do not express MHC class II molecules on peripheral APCs, but do have functional CD4(+) T cells (II(-)/4(+) mice). This model restricts the B7-dependent activation of CD4(+) T cells to costimulation in trans and excludes any contribution from indirect Ag presentation. We find that II(-)/4(+) recipients reject B7-deficient grafts as rapidly as wild-type grafts, suggesting that costimulation in trans can mediate rejection as potently as costimulation in cis. Treatment of II(-)/4(+) recipients of B7-deficient grafts with depleting Abs to CD4 or CD8 demonstrates that indirect Ag presentation to CD8(+) cells does not significantly contribute to rejection. This is the first demonstration that costimulation in trans can mediate an immune response in vivo and has important therapeutic implications.  相似文献   

9.
The costimulatory requirements required for peripheral blood T regulatory cells (Tregs) are unclear. Using cell-based artificial APCs we found that CD28 but not ICOS, OX40, 4-1BB, CD27, or CD40 ligand costimulation maintained high levels of Foxp3 expression and in vitro suppressive function. Only CD28 costimulation in the presence of rapamycin consistently generated Tregs that consistently suppressed xenogeneic graft-vs-host disease in immunodeficient mice. Restimulation of Tregs after 8-12 days of culture with CD28 costimulation in the presence of rapamycin resulted in >1000-fold expansion of Tregs in <3 wk. Next, we determined whether other costimulatory pathways could augment the replicative potential of CD28-costimulated Tregs. We observed that while OX40 costimulation augmented the proliferative capacity of CD28-costimulated Tregs, Foxp3 expression and suppressive function were diminished. These studies indicate that the costimulatory requirements for expanding Tregs differ from those for T effector cells and, furthermore, they extend findings from mouse Tregs to demonstrate that human postthymic Tregs require CD28 costimulation to expand and maintain potent suppressive function in vivo.  相似文献   

10.
Artificial APCs (aAPCs) genetically modified to express selective costimulatory molecules provide a reproducible, cost-effective, and convenient method for polyclonal and Ag-specific expansion of human T cells for adoptive immunotherapy. Among the variety of aAPCs that have been studied, acellular beads expressing anti-CD3/anti-CD28 efficiently expand CD4+ cells, but not CD8+ T cells. Cell-based aAPCs can effectively expand cytolytic CD8+ cells, but optimal costimulatory signals have not been defined. 4-1BB, a costimulatory molecule expressed by a minority of resting CD8+ T cells, is transiently up-regulated by all CD8+ T cells following activation. We compared expansion of human cytolytic CD8+ T cells using cell-based aAPCs providing costimulation via 4-1BB vs CD28. Whereas anti-CD3/anti-CD28 aAPCs mostly expand naive cells, anti-CD3/4-1BBL aAPCs preferentially expand memory cells, resulting in superior enrichment of Ag-reactive T cells which recognize previously primed Ags and efficient expansion of electronically sorted CD8+ populations reactive toward viral or self-Ags. Using HLA-A2-Fc fusion proteins linked to 4-1BBL aAPCs, 3-log expansion of Ag-specific CD8+ CTL was induced over 14 days, whereas similar Ag-specific CD8+ T cell expansion did not occur using HLA-A2-Fc/anti-CD28 aAPCs. Furthermore, when compared with cytolytic T cells expanded using CD28 costimulation, CTL expanded using 4-1BB costimulation mediate enhanced cytolytic capacity due, in part, to NKG2D up-regulation. These results demonstrate that 4-1BB costimulation is essential for expanding memory CD8+ T cells ex vivo and is superior to CD28 costimulation for generating Ag-specific products for adoptive cell therapy.  相似文献   

11.
To reject tumors, T cells must overcome poor tumor immunogenicity and an adverse tumor microenvironment. Providing agonistic costimulatory signals to tumor-infiltrating T cells to augment T cell function remains a challenge for the implementation of safe and effective immunotherapy. We hypothesized that T cells overexpressing selected costimulatory ligands could serve as cellular vehicles mediating powerful, yet constrained, anatomically targeted costimulation. Here, we show that primary human T cells expressing CD80 and 4-1BB ligand (4-1BBL) vigorously respond to tumor cells lacking costimulatory ligands and provoke potent rejection of large, systemic tumors in immunodeficient mice. In addition to showing costimulation of bystander T cells (transcostimulation), we show the effect of CD80 and 4-1BBL binding to their respective receptors in the immunological synapse of isolated single cells (autocostimulation). This new strategy of endowing T cells with constitutively expressed costimulatory ligands could be extended to other ligand-receptor pairs and used to enhance any targeted adoptive transfer therapy.  相似文献   

12.
The TNFR superfamily members 4-1BB (CD137) and OX40 (CD134) are costimulatory molecules that potently boost CD8 and CD4 T cell responses. Concomitant therapeutic administration of agonist anti-CD137 and -CD134 mAbs mediates rejection of established tumors and fosters powerful CD8 T cell responses. To reveal the mechanism, the role of CD137 expression by specific CD8 T cells was determined to be essential for optimal clonal expansion and accumulation of effector cells. Nonetheless, dual costimulation induced production of supereffector CD8 T cells when either the specific T cells or the host alone bore CD137. Perhaps surprisingly, the total absence of CD137 prevented anti-CD134 augmentation of supereffector differentiation demonstrating an unappreciated link between these related pathways. Ultimately, it was reasoned that these powerful dual costimulatory responses involved common gamma family members, and we show substantial increases of CD25 and IL-7Ralpha-chain expression by the specific CD8 T cells. To investigate this further, it was shown that IL-7 mediated T cell accumulation, but importantly, a gradual and preferential effect of survival was directed toward supereffector CD8 T cells. In fact, a clear enhancement of effector differentiation was demonstrated to be proportional to the increasing amount of IL-7Ralpha expression by the specific CD8 T cells. Therefore, dual costimulation through CD137 and CD134 drives production and survival of supereffector CD8 T cells through a distinct IL-7-dependent pathway.  相似文献   

13.
The role of B7 costimulation in CD4/CD8 T cell homeostasis   总被引:7,自引:0,他引:7  
The effect of B7-mediated costimulation on T cell homeostasis was examined in studies of B7-1 (CD80) and B7-2 (CD86) transgenic as well as B7-deficient mice. B7 overexpression in transgenic mice resulted in marked polyclonal peripheral T cell hyperplasia accompanied by skewing toward an increased proportion of CD8 single-positive cells and a decreased proportion of CD4 single-positive cells in thymus and more markedly in peripheral T cells. B7-induced T cell expansion was dependent on both CD28 and TCR expression. Transgenic overexpression of B7-1 or B7-2 resulted in down-regulation of cell surface CD28 on thymocytes and peripheral T cells through a mechanism mediated by intercellular interaction. Mice deficient in B7-1 and B7-2 exhibited changes that were the reciprocal of those observed in B7-overexpressing transgenics: a marked increase in the CD4/CD8 ratio in peripheral T cells and an increase in cell surface CD28 in thymus and peripheral T cells. These reciprocal effects of genetically engineered increase or decrease in B7 expression indicate that B7 costimulation plays a physiological role in the regulation of CD4+ and CD8+ T cell homeostasis.  相似文献   

14.
CD4 T cells are known to assist the CD8 T cell response by activating APC via CD40-CD40 ligand (L) interactions. However, recent data have shown that bacterial products can directly activate APC through Toll-like receptors, resulting in up-regulation of costimulatory molecules necessary for the efficient priming of naive T cells. It remains unclear what role CD4 T cell help and various costimulation pathways play in the development of CD8 T cell responses during bacterial infection. In this study, we examined these questions using an intracellular bacterium, Listeria monocytogenes, as a model of infection. In CD4 T cell-depleted, CD4(-/-), and MHC class II(-/-) mice, L. monocytogenes infection induced CD8 T cell activation and primed epitope-specific CD8 T cells to levels commensurate with those in normal C57BL/6 mice. Furthermore, these epitope-specific CD8 T cells established long-term memory in CD4(-/-) mice that was capable of mounting a protective recall response. In vitro analysis showed that L. monocytogenes directly stimulated the activation and maturation of murine dendritic cells. The CD8 T cell response to L. monocytogenes was normal in CD40L(-/-) mice but defective in CD28(-/-) and CD137L(-/-) mice. These data show that in situations where infectious agents or immunogens can directly activate APC, CD8 T cell responses are less dependent on CD4 T cell help via the CD40-CD40L pathway but involve costimulation through CD137-CD137L and B7-CD28 interactions.  相似文献   

15.
Blockade of costimulatory signals is a promising therapeutic target to prevent allograft rejection. In this study, we sought to characterize to what extent CTLA-4 engagement contributes to the development of transplantation tolerance under the cover of CD40/CD40L and CD28/CD86 blockade. In vitro, we found that inhibition of the primary alloresponse and induction of alloantigen hyporesponsiveness by costimulation blockade was abrogated by anti-CTLA-4 mAb. In addition, regulatory CD4(+)CD25(+) T cells (T(REG)) were confirmed to play a critical role in the induction of hyporesponsiveness by anti-CD40L and anti-CD86 mAb. Our data indicated that CTLA-4 engagement is not required for activation or suppressor function of T(REG). Instead, in the absence of either CTLA-4 signaling or T(REG), CD8(+) T cell division was enhanced, whereas the inhibition of CD4(+) T cell division by costimulation blockade remained largely unaffected. In vivo, the administration of additional anti-CTLA-4 mAb abrogated anti-CD40L- and anti-CD86 mAb-induced cardiac allograft survival. Correspondingly, rejection was accompanied by enhanced allograft infiltration of CD8(+) cells. We conclude that CTLA-4 signaling and T(REG) independently cooperate in the inhibition of CD8(+) T cell expansion under costimulation blockade.  相似文献   

16.
CD8(+) T cells are a critical component of the adaptive immune response against infections and tumors. A current paradigm in immunology is that naive CD8(+) T cells require CD28 costimulation, whereas memory CD8(+) T cells do not. We show here, however, that during viral infections of mice, costimulation is required in vivo for the reactivation of memory CD8(+) T cells. In the absence of CD28 costimulation, secondary CD8(+) T cell responses are greatly reduced and this impairs viral clearance. The failure of CD8(+) T cells to expand in the absence of CD28 costimulation is CD4(+) T cell help independent and is accompanied by a failure to down-regulate Bcl-2 and by cell cycle arrest. This requirement for CD28 costimulation was shown in both influenza A and HSV infections. Thus, contrary to current dogma, memory CD8(+) T cells require CD28 costimulation to generate maximal secondary responses against pathogens. Importantly, this CD28 requirement was shown in the context of real infections were multiple other cytokines and costimulators may be up-regulated. Our findings have important implications for pathogens, such as HIV and measles virus, and tumors that evade the immune response by failing to provide CD28 costimulation. These findings also raise questions about the efficacy of CD8(+) T cell-based vaccines against such pathogens and tumors.  相似文献   

17.
Pertussis toxin (PTX) has potent immunologic adjuvant activity in vivo and concomitantly enhances both T helper type (Th1) and Th2 cytokine responses. The PTX-induced enhancement of Th1 and Th2 immunity is mediated via the activation of antigen presenting cells (APCs), but the underlying mechanism is not known. Here we asked whether the adjuvant activity of PTX on T cell immunity was mediated by cytokines and/or costimulatory signals. The results show that in vivo blockade of CD28-CD80/86 costimulation essentially abrogated PTX-mediated enhancement of antigen-specific Th1 and Th2 responses. Blockade of CD40L-CD40 interactions was less efficient in inhibiting PTX-mediated enhancement of Th1 and Th2 responses. In contrast, the adjuvant activity of PTX was not mediated via cytokines, because neither Th1 nor Th2 responses were substantially impaired in mice deficient for IL-12, IFN-gamma, IL-4, IL-5, or IL-6. Collectively, the data suggest that PTX mediates its adjuvant effects on T cell cytokine differentiation and clonal expansion via the modulation of costimulatory molecules on APCs. Understanding the costimulatory pathways targeted by PTX could lead to the design of novel adjuvants that selectively induce Th1 or Th2 immunity.  相似文献   

18.
Activation and robust expansion of naive T cells often require T cell costimulatory signals and T cell growth factors. However, the precise growth and costimulation requirements for activation and expansion of CD4(+) and CD8(+) T cells in vivo in allograft response are still not clearly defined. In the present study, we critically examined the role of CD28/CD40 ligand (CD40L) costimulation and the common gamma-chain (gamma(c)) signals, a shared signaling component by receptors for all known T cell growth factors (i.e., IL-2, IL-4, IL-7, IL-9, IL-15, IL-21), in activation and expansion of CD4(+) and CD8(+) T cells in the allogeneic hosts. We found that CD28/CD40L costimulation and the gamma(c) signals are differentially involved in proliferation and clonal expansion of CD4(+) and CD8(+) T cells in response to alloantigen stimulation. CD8(+) T cells are highly dependent on the gamma(c) signals for survival, expansion, and functional maturation, whereas in vivo expansion of alloreactive CD4(+) T cells is largely gamma(c) independent. T cell costimulation via CD28 and CD40L, however, is necessary and sufficient for activation and expansion of CD4(+) T cells in vivo. In a skin transplant model, blocking both CD28/CD40L and the gamma(c) pathways induced prolonged skin allograft survival. Our study provides critical insights that the CD4 and CD8 compartments are most likely governed by distinct mechanisms in vivo, and targeting both costimulatory and gamma(c) signals may be highly effective in certain cytopathic conditions involving activation of both CD4(+) and CD8(+) T cells.  相似文献   

19.
We previously showed that naive CD4+ Th cells acquire peptide-MHC class I (pMHC I) and costimulatory molecules from OVA-pulsed dendritic cells (DC(OVA)), and act as Th-APCs in stimulation of CD8+ CTL responses. In this study, we further demonstrated that naive CD8+ cytotoxic T (Tc) cells also acquire pMHC I and costimulatory CD54 and CD80 molecules by DC(OVA) stimulation, and act as Tc-APC. These Tc-APC can play both negative and positive modulations in antitumor immune responses by eliminating DC(OVA) and neighboring Tc-APC, and stimulating OVA-specific CD8+ central memory T responses and antitumor immunity. Interestingly, the stimulatory effect of Tc-APC is mediated via its IL-2 secretion and acquired CD80 costimulation, and is specifically targeted to OVA-specific CD8+ T cells in vivo via its acquired pMHC I complexes. These principles could be applied to not only antitumor immunity, but also other immune disorders (e.g., autoimmunity).  相似文献   

20.
CD1d-restricted Valpha14(+) invariant NK T (iNKT) cells are a specialized alphabeta T cell subset that regulates both innate and adaptive immunity. Although costimulatory molecules are required for the activation of conventional T cells and for the development of Foxp3(+) T cells, their role in iNKT cell regulation is unclear. Here we report that mice deficient in CD80/CD86 and/or B7h exhibit severe defects in thymic iNKT cell maturation, associated with largely reduced iNKT cell number in the thymus and the periphery. We show that costimulation is necessary for the optimal expansion of postselected NK1.1(-) immature iNKT cells in the thymus and for the proper expression of the maturation markers T-bet and CD122. Surprisingly, costimulatory molecules on both hemopoietic and nonhematopoietic cells are required for iNKT cell development. Our results thus demonstrate a previously unknown function of costimulation in the intrathymic development of iNKT cells, distinct from that of conventional T cells and regulatory T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号