首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of adriamycin to complex cardiolipin was used to determine the distribution of cardiolipin across the inner membrane of rat liver and heart mitochondria. In both mitochondrial types, about 57 +/- 5% of the total cardiolipin was found to be located in the cytoplasmic face of the inner membrane. Mitochondria and mitoplasts were used to study the cytoplasmic face of the inner membrane, purified submitochondrial vesicles with inverted membrane orientation for the matrix face. The cardiolipin amount titrated by adriamycin in the latter was found to be complementary to the amount titrated in the cytoplasmic face. The adriamycin association constant determined for the first saturation level of mitochondria was in good agreement with the value published by Goormaghtigh et al. (Goormaghtigh, E., Chatelain, P., Caspers, J., and Ruysschaert, J. M. (1980) Biochim. Biophys. Acta 597, 1-14) for cardiolipin in artificial membranes. Two binding plateaus were observed when increasing amounts of adriamycin were added to mitochondria. The plateau at higher concentrations is conveniently explained by the penetration of adriamycin into mitochondria and the titration of cardiolipin in the matrix face. Scatchard plot analysis of the binding curves leading to the two plateaus produced almost identical association constants. The total amount of cardiolipin in mitochondria calculated from curves of this type corresponded to the total amount of cardiolipin determined by phosphate analysis of extracts, analyzed by thin layer chromatography.  相似文献   

2.
The ADP/ATP translocator was selectively labeled with the triplet probe eosin-5-maleimide (EMA) after pretreatment with N-ethylmaleimide in beef heart mitochondria, as reported previously for submitochondrial particles (Müller, M., Krebs, J. J. R., Cherry, R. J., and Kawato, S. (1982) J. Biol. Chem. 257, 1117-1120). The EMA binding was completely inhibited by carboxyatractylate. 0.7-1.1 molecules of EMA conjugated with 1 molecule of the dimeric translocator with Mr approximately 65,000. The EMA binding decreased [14C]ADP uptake by about approximately 25%. The EMA-labeled translocator bongkrekate complex was purified and reconstituted in liposomes by removing Triton X-100 with Amberlite XAD-2. The liposomes were composed of phosphatidylcholine/phosphatidylethanolamine/cardiolipin and the lipid to protein ratio by weight was (L/P) = 60. Rotational diffusion of the ADP/ATP translocator around the membrane normal was measured in reconstituted proteoliposomes and in the mitochondrial inner membranes by observing the flash-induced absorption anisotropy, r(t), of EMA. In proteoliposomes with L/P = 60, the translocator was rotating with an approximate average rotational relaxation time of phi congruent to 246 microseconds and a normalized time-independent anisotrophy [r3/rr(0)]min congruent to 0.55. In intact mitochondria, values of phi congruent to 405 microseconds and r3/rr(0) congruent to 0.79 were obtained. The higher value of r3/rr(0) in mitochondria compared with proteoliposomes indicates the co-existence of rotating and immobile translocator (phi greater than 20 ms) in the inner mitochondrial membrane. Based on the assumption that all the translocator is rotating in the lipid-rich proteoliposomes, the population of the mobile translocator at 20 degrees C was calculated to be approximately 47%. By removing the outer membrane, the mobile population was increased to approximately 70% in mitoplasts, while approximately 53% of the translocator was rotating in submitochondrial particles. The above results indicate a significant difference in protein-protein interactions of the ADP/ATP translocator in the different types of inner membranes of mitochondria. The immobile population of the translocator could be due to nonspecific protein aggregates caused by the very high concentration of proteins in the inner membrane of mitochondria (L/P approximately 0.4).  相似文献   

3.
Non-immune activation of the first component of complement (C1) by the heart mitochondrial inner membrane has been investigated. Cardiolipin, the only strong activator of C1 among phospholipids, is present in large amounts in the heart mitochondrial inner membrane. We therefore studied its contribution to C1 activation by mitochondria. The proteins of the mitochondrial inner membrane were found to activate C1 only weakly, in contrast with the phospholipid fraction which induces strong C1 activation. Furthermore, the digestion of mitochondrial inner membranes with proteolytic enzymes did not affect C1 activation. Additional support in favour of cardiolipin being the responsible activator came from competition experiments with mitochondrial creatine kinase (mt-CPK) and adriamycin, known to bind to cardiolipin. Both mt-CPK and adriamycin displaced C1q from the mitochondrial inner membrane. In addition, C1q displaced mt-CPK bound to mitoplasts.  相似文献   

4.
The mitochondrial location of protoporphyrinogen oxidase   总被引:4,自引:0,他引:4  
Using the digitonin method and subsequent fractionation of rat liver mitochondria, protoporphyrinogen oxidase (penultimate enzyme in the heme biosynthesis pathway) was found to be closely associated with the mitochondrial inner membrane fraction. Chemical treatment with non-specific probes (trypsin and diazobenzene sulfonate) of either intact or inverted mitoplasts, indicated that protoporphyrinogen oxidase was anchored within the lipid bilayer of the inner membrane. Protoporphyrinogen had an equal access to the active site of the enzyme from both sides of the inner membrane and its transformation to protoporphyrin did not appear to be energy-dependent. Studies of protoporphyrinogen synthesis from exogenously added coproporphyrinogen in either intact or hypoosmotically treated mitochondria underlined the importance of the peculiar submitochondrial location of coproporphyrinogen oxidase and protoporphyrinogen oxidase for the transfer of substrates to the inner membrane.  相似文献   

5.
Ethidium bromide, a new type of inhibitor of energy transduction in oxidative phosphorylation, inhibited ATP synthesis in intact mitochondria but not in submitochondrial particles, the latter being inside-out relative to the membranes of intact mitochondria. Ethidium bromide incorporated inside the submitochondrial particles inhibited ATP synthesis in the particles. The decrease of the membrane potential by valinomycin (plus KCl) inhibited only slightly the energy-dependent binding of ethidium bromide to the mitochondria. The present results show clearly that ethidium bromide inhibited energy transduction in oxidative phosphorylation by acting on the outer side (C-side) of the inner mitochondrial membrane, perhaps by neutralizing negative charges created on the surface of the C-side, and that it had no inhibitory activity on the inner side (M-side) of the membrane. Th present results show also that the energy-dependent binding of ethidium is not due to electrophoretic transport down the membrane potential; ethidium may bind to negative charges on the surface of the C-side. The present study suggest that an anisotropic distribution of electric charge in the inner mitochondrial membrane is an intermediary high energy state of oxidatvie phosphorylation.  相似文献   

6.
The liver mitochondria were submitted to a first swelling which allowed to get outer membranes. The mitoplasts obtained in these conditions were subject to a second swelling. The separation of submitochondrial membranes on a discontinuous sucrose gradient revealed three membrane fractions, an outer membrane rich fraction, an inner membrane rich fraction and a fraction enriched with contact sites between the two membranes. The various glycosyltransferase systems involved in the biosynthesis of N-glycoproteins were located in these fractions.  相似文献   

7.
Binding of 8-anilino-1-naphthalene sulphonate (ANS) to rat liver mitochondria and submitochondrial inside-out particles was measured under energized and de-energized conditions. In mitochondria, energization/de-energization changed the binding capacity for ANS extrapolated for its infinitely high concentration, whereas the apparent Kd value remained unchanged. In submitochondrial particles apparent Kd was changed but the extrapolated maximum binding was not altered. These results are compatible with theoretical considerations assuming a free permeability of mitochondrial membranes to ANS and its distribution according to the transmembrane potential. The spin-labelled cationic amphiphile, 4-(dodecyl dimethyl ammonium)-1-oxyl-2,2,6,6-tetramethyl piperidine bromide (CAT12), was trapped by de-energized mitochondria in such a way that about half of the bound probe became inaccessible to reduction by externally added ascorbate. This inaccessible fraction was increased by energization. This indicates that this cationic probe can penetrate through the inner mitochondrial membrane. De-energization produced a parallel shift of the Lineweaver-Burk plots for the oxidation of external ferrocytochrome c by mitoplasts and of succinate by submitochondrial particles. A similar shift was obtained by a partial inhibition of succinate oxidation by antimycin A. Thus, the observed changes of the kinetics of the two membrane-bound enzyme systems on de-energization can be interpreted as reflecting changes of the control points of mitochondrial respiration rather than changes of the surface potential. It is concluded that neither the fluorescent probe ANS, the spin-labelled amphiphilic cation CAT12, nor the kinetics of some respiratory enzyme systems provide a sufficient proof for changes of the surface potential of the inner mitochondrial membrane upon energization.  相似文献   

8.
Fine structure of lipid-depleted mitochondria   总被引:32,自引:12,他引:20       下载免费PDF全文
The fine structure of mitochondria and submitochondrial vesicles depleted of their lipid by extraction with aqueous acetone was studied. Thin sections of mitochondrial membranes depleted of more than 95% of their lipid retained the unit membrane structure. Densitometer tracings of the electron micrographs showed that the unit membrane of extracted mitochondria was, on the average, wider than that of unextracted controls and showed a greater variation in width. The outer membrane was lost in mitochondria from which 80–95% of the lipids was extracted. Inner membrane particles were present on submitochondrial vesicles depleted of up to 85% of their lipids. However, when more than 95% of the lipid was removed, few, if any, particles remained attached to the membranes but many particles were found unattached in the background. When lipid was restored to lipid-deficient preparations, the mitochondrial membranes were found to be devoid of inner membrane particles but were fully active with respect to succinate-cytochrome c reductase activity.  相似文献   

9.
The mechanism of cardiolipin (diphosphatidylglycerol) biosynthesis was examined in mitochondria and outer and inner mitochondrial membranes prepared from guinea pig and rat livers to determine whether this formation from phosphatidylglycerol was absolutely dependent on cytidinediphosphodiglyceride, as previously reported for intact mitochondria. Experimental results confirmed that the biosynthesis of cardiolipin, from the membrane-bound radioactive phosphatidylglycerol in intact mitochondria isolated from guinea pig and rat liver, was absolutely dependent on CDP-diglycerides and required the addition of divalent cations. Furthermore, the same mechanism for the biosynthesis of cardiolipin was operational in the outer and inner mitochondrial membranes. This biosynthesis was associated with both the outer and inner mitochondrial membranes prepared from guinea pig liver, but only with the inner mitochondrial membranes prepared from rat liver. The release of radioactive glycerol was also measured, but the amount obtained did not satisfy the stoichiometric requirement for CDP-diglyceride-independent biosynthesis of cardiolipin from 2 mol of phosphatidylglycerol with the liberation of 1 mol of glycerol. Therefore, it was concluded that this mechanism is not involved in the biosynthesis of cardiolipin in mitochondrial and submitochondrial membranes prepared from guinea pig and rat liver.  相似文献   

10.
Mitoplasts were prepared from 3-h ischemic livers in an attempt to define the structural alterations in the inner membrane that may account for the functional deficiencies of ischemic mitochondria. Mitoplasts from both control and ischemic livers had similar specific activities of cytochrome oxidase and succinate-cytochrome c reductase. With both preparations, the specific activity of rotenone-insensitive NADH-cytochrome c reductase was 10-fold lower than in the mitochondria from which they were prepared. Ischemic mitoplasts had no respiratory control with ADP, and had a slightly reduced phospholipid to protein ratio and an increased cholesterol to protein ratio. As a result, the cholesterol to phospholipid molar ratio was increased from the control of 0.04 to 0.08. There were also differences in the content of individual phospholipid species. Phosphatidylcholine increased by 15%, while cardiolipin decreased by 60%. There were increases in sphingomyelin and in the lysophospholipids of phosphatidylcholine, ethanolamine, and cardiolipin. Pretreatment with chlorpromazine did not prevent these changes. Linoleic acid was decreased by 35% in ischemic phospholipids, and the content of free fatty acids was increased 4-fold. Electron spin resonance spectroscopy of mitoplasts spin labeled with either 5- or 12-doxyl stearic acid revealed an increased molecular order (decreased fluidity) of ischemic inner mitochondrial membranes consistent with the increased cholesterol to phospholipid ratio. The data indicate activation of a phospholipase A in ischemic mitochondria with the resulting accumulation of products of lipid hydrolysis. This conclusion further emphasizes the close similarity between the structural and functional consequences of ischemia in the intact animal and the effect on isolated mitochondria of the activation of the endogenous phospholipase A. In both cases the major functional alterations are attributable to changes in the permeability of the inner mitochondrial membrane induced by the accumulation of lysophospholipids.  相似文献   

11.
The inhibition of respiratory chain activities in rat liver, rat heart and bovine heart mitochondria by the anthracycline antibiotic adriamycin was measured in order to determine the adriamycin-sensitive sites. It appeared that complex III and IV are efficiently affected such that their activities were reduced to 50% of control values at 175 +/- 25 microM adriamycin. Complex I displayed a minor sensitivity to the drug. Of the complex-I-related activities tested, only duroquinone oxidation appeared sensitive (50% inhibition at approx. 450 microM adriamycin). Electron-transfer activities catalyzed by complex II remained essentially unaltered up to high drug concentrations. Of the activities measured for this complex, only duroquinone oxidation was significantly affected. However, the adriamycin concentration required to reduce this activity to 50% exceeded 1 mM. Mitochondria isolated from rat liver, rat heart and bovine heart behaved essentially identical in their response to adriamycin. These data support the conclusion that, in these three mitochondrial systems, the major drug-sensitive sites lie in complex III and IV. Cytochrome c oxidase and succinate oxidase activity in whole mitochondria exhibited a similar sensitivity towards adriamycin, as inner membrane ghosts, suggesting that the drug has direct access to its inner membrane target sites irrespective of the presence of the outer membrane. By measuring NADH and succinate oxidase activities in the presence of exogenously added cytochrome c, it appeared that adriamycin was less inhibitory under these conditions. This suggests that adriamycin competes with cytochrome c for binding to the same site on the inner membrane, presumably cardiolipin.  相似文献   

12.
1. EPR spectra at 9 GHz and 83 degrees K of NADH-reduced anaerobic beef-heart submitochondrial particles, prepared from mitochondria by sonication and centrifugation, contain a signal (gz equals to 2.01, gy equals to 1.94, gx equals to 1.89) due to an iron-sulphur center of the mitochondrial outer membrane. 2. The ratio of inner and outer membranes in submitochondrial particles is not greatly different from that in beef-heart mitochondria. 3. Beef-heart submitochondrial particles free from outer-membrane contamination have been prepared by free-flow electrophoresis. EPR spectra at 83 degrees K of such particles are presented.  相似文献   

13.
The interaction of the cationic spin probe 4-(N,N-dimethyl-N-dodecyl)-ammonium-2,2,6,6-tetramethyl-piperidine-1-oxyl (Cat12) with intact mitochondria and submitochondrial particles was investigated as a function of salt concentration, pH and energization by ATP. In the presence of 1 mM Fe(CN)-36, which inhibits the probe reduction by the mitochondria, the probe signal is stable and shows both bound and free forms. The partition of the probe into mitochondrial membranes is decreased by various salts depending on the cation valency, indicating that the membrane is negatively charged (-10 to -15 mV at pH 7.0). The surface potential increases with pH from -3 mV at pH 5.0 to -18 mV at pH 8.0. Energization of intact mitochondria by ATP reduces the magnitude of both bound and free signals by more than 50%; the signal of the bound form slowly disappears on further incubation. The ATP effect is inhibited and also reversed by either oligomycin or CCCP. Similar effects of ATP were observed in mitoplasts but not in submitochondrial particles. In submitochondrial particles ATP has no effect on the probe signal or binding. These results suggest that the formation of membrane potential in mitochondria induces uptake and internal binding of the probe which results in broadening of the EPR signal of the internally bound probe. It is concluded that Cat12 is not a suitable probe for measurement of surface potential in energized mitochondria.  相似文献   

14.
The orientation of the transmembranous enzyme, pyridine dinucleotide transhydrogenase, in the inner mitochondrial membrane of rat liver has been determined by evaluating effects of proteases on the integrity of the enzyme in mitoplasts and submitochondrial particles. Following treatment of these membranes with the nonspecific protease, proteinase K, antigenic proteolytic products were detected by immunoblot analysis using polyclonal antibody prepared against purified bovine heart enzyme. Proteinase K treatment of mitoplasts converted the 110,000 transhydrogenase monomer into a single immunoreactive species having Mr 75,000. This proteolytic product is stable to further incubation with the protease. Treatment of submitochondrial particles with proteinase K resulted in the disappearance of the 110,000 monomer and the transient formation of an intermediate product with Mr 52,000. Information from these proteolysis studies was used to construct a model of the orientation of transhydrogenase in the inner mitochondrial membrane. This model indicates that transhydrogenase (Mr 110,000) contains a core of proteolytically inaccessible proteins within the membrane (Mr 23,000) bounded by extramembranous domains on the matrix (Mr 52,000) and cytoplasmic (Mr 35,000) face of the inner mitochondrial membrane.  相似文献   

15.
Progress in understanding the role of NAD(P)H oxidation in plant respiration is restricted by the lack of access to specific inhibitors of each of the unknown number of NAD(P)H dehydrogenases in the inner mitochondrial membrane. Platanetin (3,5,7,8-tetrahydroxy-6-isoprenyl flavone) is known to be an inhibitor of extermal NADH oxidation by plant mitochondria, while 7-iodo-acridone-4-carboxylic acid (IACA) is an inhibitor of an internal, rotenone-insensitive NAD(P)H dehydrogenase isolated from yeast mitochondria.
Here we show that platanetin inhibits external NAD(P)H oxidation by intact potato ( Solanum tuberosum L. cv. Bintje) tuber mitochondria, deamino-NADH oxidation by Complex I assayed using inside-out submitochondrial particles from these mitochondria, and rotenone-insensitive NAD(P)H oxidation by these submitochondrial particles. IACA was found to inhibit the oxidation of external NADH and succinate by intact mitochondria with similar efficiency. However, IACA also inhibited NADPH and duroquinol oxidation by intact mitochondria as well as deamino-NADH and NAD(P)H oxidation by inside-out submitochondrial particles. This indicates that IACA has several sites of inhibition in the electron transport chain. The lack of specificity of both platanetin and IACA prevents these inhibitors from being used to shed more light on the identity of the NAD(P)H dehydrogenases in plant mitochondria.  相似文献   

16.
The interaction of the antineoplastic agent adriamycin with sonicated liposomes composed of phosphatidylcholine alone and with small amounts (1-6%) of cardiolipin has been studied by fluorescence techniques. Equilibrium binding data show that the presence of cardiolipin increases the amount of drug bound to liposomes when the bilayer is below its phase transition temperature and when the ionic strength is relatively low (0.01 M). At higher ionic strength (0.15 M) and above the Tm (i.e. conditions which are closer to the physiological state) the binding of the drug to the two liposome types is nearly the same. Thus the differences in the interactions of adriamycin with cardiolipin-containing membranes, as opposed to those composed of phosphatidylcholine alone, are not due simply to increased binding but rather to an altered membrane structure when this lipid is present. Quenching of adriamycin fluorescence by iodide shows that bound drug is partially, but not completely, buried in the liposomal membrane. Both in the presence and absence of cardiolipin the bulk of the adriamycin is more accessible to the quencher below the Tm than above it; that is, a solid membrane tends to exclude the drug from deep penetration. Above the Tm, the presence of cardiolipin alters the nature of liposome-adriamycin interaction. Here the fluorescence quenching data suggest that the presence of small amounts of cardiolipin (3%) in a phosphatidylcholine matrix creates two types of binding environments for drug, one relatively exposed and the other more deeply buried in the membrane. The temperature dependence of the adriamycin fluorescence and the liposome light scattering reveal that cardiolipin alters the thermal properties of the bilayer as well as its interaction with adriamycin. At low ionic strength lateral phase separations may occur with both pure phosphatidylcholine and when 3% cardiolipin is present; under these conditions the bound adriamycin exists in two kinds of environment. It is notable that only adriamycin fluorescence reveals this phenomenon; thebulk property of liposome light scattering reports only on the overall membrane phase change. These data suggest that under certain conditions the drug binding sites in the membranes are decoupled from the bulk of the lipid bilayer.  相似文献   

17.
Rotenone-sensitive NADH dehydrogenase activity and Lubrol stimulation of cytochrome oxidase activity were measured to assess the opposite membrane polarity of beef heart mitoplast and inside-out particle preparations. The ATP-Pi exchange activity of mitoplasts was not affected by their incubation at pH 8.9 in the presence of 5 mM EDTA (a treatment known to extract coupling factor B (F beta) from submitochondrial particles), nor was it stimulated by the addition of F beta to intact and alkaline treated mitoplast preparations. In contrast, the exchange activity of inside-out particles was decreased 18 fold by the alkaline/EDTA treatment and was almost completely restored by the addition of F beta to F beta-depleted particles. From these results it is concluded that in beef heart mitochondria, the coupling factor F beta is bound to the matrix-side of the inner mitochondrial membrane.  相似文献   

18.
The surface charge of intact mitochondria and submitochondrial particles was examined by the technique of preparative free flow electrophoresis. When submitochondrial preparations obtained by a swelling-contraction procedure were examined with this technique, two fractions were observed. One of these fractions exhibited the same electrophoretic properties as intact mitochondria, which indicated that it was derived from the outer limiting membrane of the mitochondrion. This fraction was found to contain the enzymes monoamine oxidase and rotenone-insensitive NADH-cytochrome c reductase which have been reported to be localized in the outer mitochondrial membrane. The other fraction exhibited an electrophoretic mobility which was different from that of intact mitochondria, and this fraction contained enzymes characteristic of the inner membrane-matrix fraction such as soluble and particulate enzymes of the Krebs cycle. Microsomes exhibited an electrophoretic mobility which was almost identical with that of the outer mitochondrial membrane. In addition to resolving the localization of enzymes in mitochondrial membranes, these data indicate that the outer limiting membrane of the mitochondrion is the sole determinant of the surface charge of mitochondria.  相似文献   

19.
An electrophilous inhibitor, p-(N,N-di-2-chloroethyl)amino-phenylacetic acid (I), specifically disturbs the mechanism of respiration and phosphorylation coupling in mitochondria. I inhibits respiration and ATPase activity in intact mitochondria and does not affect these processes in mitochondria and submitochondrial particles with partially or completely impaired coupling system. The data obtained show that I inhibits protonophoric function of NADH-ferricianide reductase from submitochondrial particles soluble ATPases from bovine heart and Micrococcus lysodeikticus mitochondria adsorded on octane water interface and has no effect on respective enzymes in water solutions. Cation-transferring enzymes are shown to behave with respect to the inhibitor on lipid water interface like respective enzymes in intact mitochondria, while in water solutions they behave like those in systems with the impaired coupling mechanism. Effect of I on protonophoric function of oligomycin-sensitive ATPase and bacteriorhodopsin plaques isolated from Halobacterium halobium is also studied. It is shown that the precence or the absence of I effect is due to a nature of lipid in the enzymatic complex. I is found also to inhibit specifically the transport of Ca2+ from water to octane in the presence of Ca2+-ATP-ase from rabbit sarcoplasmic reticulum.  相似文献   

20.
Submitochondrial particles from sweet potato root tissue retainedthe respiratory characteristics of the intact mitochondria withrespect to the sensitivity to cyanide and salicylhydroxamicacid. The activities of total, cyanide-insensitive, and salicylhydroxamate-sensitiverespiration of the submitochondrial particles yielded from adefinite weight of tissue slices incubated under aerobic conditions,particularly in ethylenecontaining air, were higher than thosefrom the same weight of intact tissue. The less phospholipidthe submitochondrial particles contained relative to protein,the higher the activities of cyanide-insensitive and salicylhydroxamate-sensitiverespiration tended to be relative to total respiratory activity.When the submitochondrial particles were incubated with phospholipidliposomes, the activities of cyanide-insensitive and salicylhydroxamate-sensitive,but not cyanide-sensitive, respiration became extremely low.All phospholipids showed this effect. Such incubation of thesubmitochondrial particles with phospholipid liposomes yieldedlighter particles, indicating close association of exogenouslyadded phospholipid with the particles. Phospholipid moleculesseemed to enter the membrane of the particles. We propose thatphospholipid deficiency in the mitochondrial inner membranefacilitates operation of the cyanide-insensitive electron transportpath. (Received March 30, 1984; Accepted June 15, 1984)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号