首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pulsed field gradient NMR method for measuring self-diffusion has been used for a direct determination of the lateral diffusion coefficient of cholesterol, fluorine labeled at the 6-position, for an oriented lamellar liquid-crystalline phase of dimyristoylphosphatidylcholine (DMPC)/cholesterol/water. It is found that the diffusion coefficients of DMPC and cholesterol are equal over a large temperature interval. The apparent energy of activation for the diffusion process (58 kJ/mol) is about the same as for a lamellar phase of DMPC/water, whereas the phospholipid lateral diffusion coefficient is approximately four times smaller in the presence of cholesterol.  相似文献   

2.
To examine the effect of incorporation of cholesterol into high density lipoprotein (HDL) recombinants, multilamellar liposomes of 3H cholesterol/14C dimyristoyl phosphatidylcholine were incubated with the total apoprotein (apoHDL) and principal apoproteins (apoA-1 and apoA-2) of human plasma high density lipoprotein. Soluble recombinants were separated from unreacted liposomes by centrifugation and examined by differential scanning calorimetry and negative stain electron microscopy. At 27 degrees C, liposomes containing up to approx. 0.1 mol cholesterol/mol dimyristoyl phosphatidylcholine (DMPC) were readily solubilized by apoHDL, apoA-1 or apoA-2. However, the incorporation of DMPC and apoprotein into lipoprotein complexes was markedly reduced when liposomes containing a higher proportion of cholesterol were used. For recombinants prepared from apoHDL, apoA-1, or apoA-2, the equilibrium cholesterol content of complexes was approx. 45% that of the unreacted liposomes. Electron microscopy showed that for all cholesterol concentrations, HDL recombinants were predominantly lipid bilayer discs, approx. 160 X 55 A. Differential scanning calorimetry of cholesterol containing recombinants of DMPC/cholesterol/apoHDL or DMPC/cholesterol/apoA-1 showed, with increasing cholesterol content, a linear decrease in the enthalpy of the DMPC gel to liquid crystalline transition, extrapolating to zero enthalpy at 0.15 cholesterol/DMPC. The enthalpy values were markedly reduced compared to control liposomes, where the phospholipid transition extrapolated to zero enthalpy at approx. 0.45 cholesterol/DMPC. The calorimetric and solubility studies suggest that in high density lipoprotein recombinants cholesterol is excluded from 55% of DMPC molecules bound in a non-melting state by apoprotein.  相似文献   

3.
Using the molecular dynamics simulation technique, we studied the changes occurring in a dipalmitoylphosphatidylcholine (DPPC):cholesterol (CH) membrane at 50 mol% sterol when cholesterol is replaced with cholesterol sulfate (CS). Our simulations were performed at constant pressure and temperature on a nanosecond time scale. We found that 1) the area per DPPC:CS heterodimer is greater than the area of the DPPC:CH heterodimer; 2) CS increases ordering of DPPC acyl chains, but to a lesser extent than CH; 3) the number of hydrogen bonds between DPPC and water is decreased in a CS-containing membrane, but CS forms more water hydrogen bonds than CH; and 4) the membrane dipole potential reverses its sign for a DPPC-CS membrane compared to a DPPC-CH bilayer. We also studied the changes occurring in lipid headgroup conformations and determined the location of CS molecules in the membrane. Our results are in good agreement with the data available from experiments.  相似文献   

4.
To examine the effect of incorporation of cholesterol into high density lipoprotein (HDL) recombinants, multilamellar liposomes of 3H cholesterol/14C dimyristoyl phosphatidylcholine were incubated with the total apoprotein (apoHDL) and principal apoproteins (apoA-1 and apoA-2) of human plasma high density lipoprotein. Soluble recombinants were separated from unreacted liposomes by centrifugation and examined by differential scanning calorimetry and negative stain electron microscopy. At 27°C, liposomes containing up to approx. 0.1 mol cholesterol/mol dimyristoyl phosphatidylcholine (DMPC) were readily solubilized by apoHDL, apoA-1 or apoA-2. However, the incorporation of DMPC and apoprotein into lipoprotein complexes was markedly reduced when liposomes containing a higher proportion of cholesterol were used. For recombinants prepared from apoHDL, apoA-1 or apoA-2, the equilibrium cholesterol content of complexes was approx. 45% that of the unreacted liposomes. Electron microscopy showed that for all cholesterol concentrations, HDL recombinants were predominantly lipid bilayer discs, approx. 160 × 55 A?. Differential scanning calorimetry of cholesterol containing recombinants of DMPC/cholesterol/apoHDL or DMPC/cholesterol/apoA-1 showed, with increasing cholesterol content, a linear decrease in the enthalpy of the DMPC gel to liquid crystalline transition, extrapolating to zero enthalpy at 0.15 cholesterol/DMPC. The enthalpy values were markedly reduced compared to control liposomes, where the phospholipid transition extrapolated to zero enthalpy at approx. 0.45 cholesterol/DMPC. The calorimetric and solubility studies suggest that in high density lipoprotein recombinants cholesterol is excluded from 55% of DMPC molecules bound in a non-melting state by apoprotein.  相似文献   

5.
The phase equilibria of a swelling amphiphile, dimyristoylphosphatidylcholine (DMPC) and a cationic soap, cetyltrimethylammoniumbromide (CTAB) has been investigated in water at 30°C. The swelling of the lamellar phase of DMPC in water increases dramatically in the presènce of a few mol% of CTAB. Maximum swelling of the lamellar phase in water is obtained when the lamellar phase is in equilibrium with aqueous solution whose concentration of CTAB is less than the critical micell concentration (cmc). Vesicles are easily formed by the lamellar phase in this region. When the cme of CTAB is exceeded, DMPC is solubilized in micelles. The solubilizing capacity corresponds to about 1 mol of DMPC per 3 mol of CTAB. The phase behaviour of DMPC and CTAB in water is very similar to the corresponding equilibria for amphiphite compounds with shorter hydrocarbon chains. The swelling of DMPC and CTAB is influenced by the presence of electrolytes in the water phase. Due to electrostatic effects the swelling of the lamellar phase is lower in electrolyte solutions than in pure water.  相似文献   

6.
We have measured the lateral diffusion coefficient (D), of active dansyl-labeled gramicidin C (DGC), using the technique of fluorescence photobleaching recovery, under conditions in which the cylindrical dimer channel of DGC predominates. In pure, hydrated, dimyristoylphosphatidylcholine (DMPC) multibilayers (MBL), D decreases from 6 X 10(-8) cm2/s at 40 degrees C to 3 X 10(-8) cm2/s at 25 degrees C, and drops 100-fold at 23 degrees C, the phase transition temperature (Tm) of DMPC. Above Tm, addition of cholesterol decreases D; a threefold stepwise drop occurs between 10 and 20 mol %. Below Tm, increasing cholesterol increases D; a 10-fold increase occurs between 10 and 20 mol % at 21 degrees C, between 20 and 25 mol % at 15 degrees C, and between 25 and 30 mol % at 5 degrees C. In egg phosphatidylcholine (EPC) MBL, D decreases linearly from 5 X 10(-8) cm2/s at 35 degrees C to 2 X 10(-8) cm2/s at 5 degrees C; addition of equimolar cholesterol reduces D by a factor of 2. Thus this transmembrane polypeptide at low membrane concentrations diffuses quite like a lipid molecule. Its diffusivity in lipid mixtures appears to reflect predicted changes of lateral composition. Increasing gramicidin C (GC) in DMPC/GC MBL broadened the phase transition, and the diffusion coefficient of the lipid probe N-4-nitrobenzo-2-diazole phosphatidylethanolamine (NBD-PE) at 30 degrees C decreases from 8 X 10(-8) cm2/s below 5 mol % GC to 2 X 10(-8) cm2/s at 14 mol % GC; D for DGC similarly decreases from 4 X 10(-8) cm2/s at 2 mol % GC to 1.4 X 10(-8) cm2/s at 14 mol % GC. Hence, above Tm, high concentrations of this polypeptide restrict the lateral mobility of membrane components.  相似文献   

7.
Giant liposomes obtained by electroformation and observed by phase-contrast video microscopy show spontaneous deformations originating from Brownian motion that are characterized, in the case of quasispherical vesicles, by two parameters only, the membrane tension sigma and the bending elasticity k(c). For liposomes containing dimyristoyl phosphatidylcholine (DMPC) or a 10 mol% cholesterol/DMPC mixture, the mechanical property of the membrane, k(c), is shown to be temperature dependent on approaching the main (thermotropic) phase transition temperature T(m). In the case of DMPC/cholesterol bilayers, we also obtained evidence for a relation between the bending elasticity and the corresponding temperature/cholesterol molecular ratio phase diagram. Comparison of DMPC/cholesterol with DMPC/cholesterol sulfate bilayers at 30 degrees C containing 30% sterol ratio shows that k(c) is independent of the surface charge density of the bilayer. Finally, bending elasticities of red blood cell (RBC) total lipid extracts lead to a very low k(c) at 37 degrees C if we refer to DMPC/cholesterol bilayers. At 25 degrees C, the very low bending elasticity of a cholesterol-free RBC lipid extract seems to be related to a phase coexistence, as it can be observed by solid-state (31)P-NMR. At the same temperature, the cholesterol-containing RBC lipid extract membrane shows an increase in the bending constant comparable to the one observed for a high cholesterol ratio in DMPC membranes.  相似文献   

8.
A highly sensitive and stable scanning microcalorimeter is employed in a reinvestigation of the effect of cholesterol on multilamellar suspensions of dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC). Below 20 mol % cholesterol the DPPC mixtures give heat-capacity curves each of which can be resolved into a narrow and a broad peak, suggesting the coexistence of two immiscible solid phases; above 20 mol % only the broad peak is observed and this disappears at about 50 mol %. The DMPC mixtures show a more complicated behavior; from about 13.5 to 20 mol % cholesterol the observed curves appear to be the sum of three component peaks. As with the DPPC mixtures, only a single broad peak is observed above 20 mol % cholesterol, and this broad peak becomes undetectable above about 50 mol %. These results are discussed.  相似文献   

9.
K Weisz  G Gr?bner  C Mayer  J Stohrer  G Kothe 《Biochemistry》1992,31(4):1100-1112
The influence of cholesterol on the dynamic organization of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers was studied by deuteron nuclear magnetic resonance (2H NMR) using unoriented and macroscopically aligned samples. Analysis of the various temperature- and orientation-dependent experiments were performed using a comprehensive NMR model based on the stochastic Liouville equation. Computer simulations of the relaxation data obtained from phospholipids deuterated at the 6-, 13- and 14-position of the sn-2 chain and cholesterol labeled at the 3 alpha-position of the rigid steroid ring system allowed the unambiguous assignment of the various motional modes and types of molecular order present in the system. Above the phospholipid gel-to-liquid-crystalline phase transition, TM, 40 mol % cholesterol was found to significantly increase the orientational and conformational order of the phospholipid with substantially increased trans populations even at the terminal sn-2 acyl chain segments. Lowering the temperature continuously increases both inter- and intramolecular ordering, yet indicates less ordered chains than found for the pure phospholipid in its paracrystalline gel phase. Trans-gauche isomerization rates on all phospholipid alkyl chain segments are slowed down by incorporated cholesterol to values characteristic of gel-state lipid. However, intermolecular dynamics remain fast on the NMR time scale up to 30 K below TM, with rotational correlation times tau R parallel for DMPC ranging from 10 to 100 ns and an activation energy of ER = 35 kJ/mol. Below 273 K a continuous noncooperative condensation of both phospholipid and cholesterol is observed in the mixed membranes, and at about 253 K only a motionally restricted component is left, exhibiting slow fluctuations with correlation times of tau R perpendicular greater than 1 microsecond. In the high-temperature region (T greater than TM), order director fluctuations are found to constitute the dominant transverse relaxation process. Analysis of these collective lipid motions provides the viscoelastic parameters of the membranes. The results (T = 318 K) show that cholesterol significantly reduces the density of the cooperative motions by increasing the average elastic constant of the membrane from K = 1 x 10(-11) N for the pure phospholipid bilayers to K = 3.5 x 10(-11) N for the mixed system.  相似文献   

10.
K Schorn  D Marsh 《Biophysical journal》1996,71(6):3320-3329
The dynamic molecular lipid chain conformations in fully hydrated dimyristoyl phosphatidylcholine (DMPC)-dimyristoyl glycerol (DMG) mixtures have been investigated by 2H-NMR spectroscopy of the individual lipid components, the sn-2 chains of which were perdeuterated or, in the case of DMG, specifically deuterated at the C-2 position. Mixtures of compositions corresponding to the three different regions of the binary phase diagram in which the fluid phase is lamellar (DMPC:DMG 70:30 mol/mol), inverted hexagonal (DMPC:DMG 45:55 and 40:60 mol/mol), or isotropic (DMPC:DMG 20:80 mol/mol) were investigated. The gel phase in all three regions of the phase diagram has a lamellar structure, with the lipid chains rotating about the molecular long axis but executing only limited angular excursions. In the fluid lamellar phase of the 70:30 mol/mol DMPC-DMG mixture the profile of segmental chain flexibility is similar to that in single-component phospholipid bilayers and is characterized by an order parameter plateau for both lipid components. The chain order of the DMPC component is greater than in bilayers of DMPC alone and is also greater than that of the DMG component. In the inverted hexagonal phase of the 45:55 mol/mol DMPC-DMG mixture the chain flexibility profile is characterized by more widely spaced segmental order parameters off the plateau region. The intrinsic degree of chain order in the inverted hexagonal phase is less than in the lamellar phase of the 70:30 mol/mol mixture, and the difference in chain order between the DMPC and DMG components is reduced relative to that in the lamellar phase. The unique conformational features at the C-2 position of the sn-2 chain that characterize bilayers of diacyl phospholipids are found also for the diacylglycerol molecules in the fluid lamellar phase and most probably also in the inverted hexagonal phase. The DMG molecules are therefore integrated in the membrane (or nonlamellar lipid phase) in a configuration that is similar to that of the phospholipids and different from the crystal structure of diacylglycerols.  相似文献   

11.
A Léonard  E J Dufourc 《Biochimie》1991,73(10):1295-1302
The effects of cholesterol on the structure and dynamics of dimyristoylphosphatidylcholine (DMPC) model membranes have been monitored as functions of temperature and cholesterol concentration in the membrane. The use of deuterium labels both on the cholesterol fused ring system and on the lipid chains in conjunction with solid state deuterium nuclear magnetic resonance (2H-NMR) afforded to monitor the degree of ordering of both molecules in a mixed system. The degree of ordering of the lipid head group was followed by phosphorus-31 (31P)-NMR. New findings on the effect of cholesterol on DMPC may be summarized as follows: i) cholesterol disorders the lipid chains below temperature of the DMPC gel-to-fluid transition (Tc) and orders them above; the effect is linear with cholesterol concentration at 0 and 60 degrees C but for intermediate temperatures, a saturation effect is observed at 20-30 mol %; ii) the ordering-disordering effects are perceived similarly by all chain segments with, however, a greater sensitivity for positions near the bilayer center; iii) below Tc, the lipid head group is considerably disordered by increasing amounts of cholesterol but slightly affected above; iv) the degree of ordering of cholesterol is quasi temperature independent for fractions greater than or equal to 30%; v) the average orientation of the cholesterol rigid body is perpendicular to the bilayer surface and exhibits little variations with temperature and cholesterol concentration. Variations in membrane dynamics are interpreted in terms of cholesterol-induced changes in bilayer thickness.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Cholesterol/dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles were studied by steady-state fluorescence using diphenylhexatriene (DPH) as a probe. A series of dips were found in the plot of DPH fluorescence intensity versus cholesterol concentration at certain specific cholesterol concentrations. This observation indicates that there are dominant domains in which cholesterol molecules are regularly distributed on a hexagonal superlattice in the acyl chain matrix of DMPC at critical cholesterol concentrations. These concentrations can be predicted by an equation or a mathematical series, except the one at 33 mol %. These dips of DPH fluorescence intensity are temperature dependent. The excellent agreement between experimental data and calculated values as well as similar previous findings of dips and/or kinks in the excimer-over-monomer fluorescence in pyrenephosphatidylcholine/phospholipid mixtures confirm our conclusion about lateral organizations of cholesterol and acyl lipid chains in cholesterol/phospholipid multilamellar vesicles. The regular distribution model at critical concentration is consistent with the phase diagram of cholesterol/DMPC. Using the model of regular distribution, the physical origin of the liquid-disordered (Ld) phase, liquid-ordered phase (Lo), and coexistence of liquid-disordered phase and Lo phase (Lo + Ld) is discussed on the molecular level.  相似文献   

13.
M R Vist  J H Davis 《Biochemistry》1990,29(2):451-464
Deuterium nuclear magnetic resonance spectroscopy and differential scanning calorimetry are used to map the phase boundaries of mixtures of cholesterol and chain-perdeuteriated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine at concentrations from 0 to 25 mol % cholesterol. Three distinct phases can be identified: the L alpha or liquid-crystalline phase, the gel phase, and a high cholesterol concentration phase, which we call the beta phase. The liquid-crystalline phase is characterized by highly flexible phospholipid chains with rapid axially symmetric reorientation; the gel phase has much more rigid lipid chains, and the motions are no longer axially symmetric on the 2H NMR time scale; the beta phase is characterized by highly ordered (rigid) chains and rapid axially symmetric reorientation. In addition, we identify three regions of two-phase coexistence. The first of these is a narrow L alpha/gel-phase coexistence region lying between 0 and about 6 mol % cholesterol at temperatures just below the chain-melting transition of the pure phospholipid/water dispersions, at 37.75 degrees C. The dramatic changes in the 2H NMR line shape which occur on passing through the phase transition are used to map out the boundaries of this narrow two-phase region. The boundaries of the second two-phase region are determined by 2H NMR difference spectroscopy, one boundary lying near 7.5 mol % cholesterol and running from 37 down to at least 30 degrees C; the other boundary lies near 22 mol % cholesterol and covers the same temperature range. Within this region, the gel and beta phases coexist. As the temperature is lowered below about 30 degrees C, the phospholipid motions reach the intermediate time scale regime of 2H NMR so that spectral subtractions become difficult and unreliable. The third two-phase region lies above 37 degrees C, beginning at a eutectic point somewhere between 7.5 and 10 mol % cholesterol and ending at about 20 mol %. In this region, the L alpha and beta phases are in equilibrium. The boundaries for this region are inferred from differential scanning calorimetry traces, for the boundary between the L alpha- and the two-phase region, and from a dramatic sharpening of the NMR peaks on crossing the boundary between the two-phase region and the beta-phase region. In this region, the technique of difference spectroscopy fails, presumably because the diffusion rate in both the L alpha- and beta-phase domains is so rapid that phospholipid molecules exchange rapidly between domains on the experimental time scale.  相似文献   

14.
Sonicated cholesterol-phosphatidylcholine (PC) liposomes containing 4 mol % phosphatidic acid (PA) aggregate in 10 mM Ca2+, slowly at low molar fractions of cholesterol (up to 30%) and 15 times faster at higher concentrations; the inflection point is at ca. 35 mol % bilayer cholesterol. O-[[(Methoxyethoxy)ethoxy]ethyl]cholesterol (OH-blocked cholesterol) does not give this rate enhancement. If PC is replaced by diether PC (CO groups abolished), cholesterol does not accelerate aggregation at concentrations in the bilayer below 50 mol %. No change in Ca2+-induced aggregation rates was observed if the ester CO groups of the bridge-forming PA only were replaced by CH2 (diether PA) in liposomes containing PC and cholesterol. PA-mediated Ca2+ membrane traversal seems to be accelerated by the addition of cholesterol to the PC-PA membrane, but analysis shows that the effect is due to the bilayer condensation effect of cholesterol resulting in an increase in the surface concentration of PA and that membrane cholesterol in fact slightly reduces the rate of Ca(PA)2 traversal; OH-blocked cholesterol, however, increases this rate 3-fold. It appears that lipid OH and CO groups interact, directly or with the mediation of water, in establishing the structure of the membrane "hydrogen belts", i.e., the strata containing those hydrogen-bond donors and acceptors. Cholesterol hydroxyl above 33 mol % (saturation of a 2:1 PC/cholesterol complex?) causes a restructuring of the hydrogen belts that facilitates membrane-water-membrane dehydration, the prerequisite for liposome aggregation by trans-Ca(PA)2 formation. On the other hand, the formation of the dehydrated cis-Ca(PA)2 complex that precedes Ca2+ membrane traversal is not accelerated by presence of the cholesterol hydroxyl group.  相似文献   

15.
In the present work, we demonstrate that phosphatidylcholine with (16:1)9 acyl chains undergoes polymorphic rearrangements in mixtures with 0.6-0.8 mol fraction cholesterol. Studies were performed using differential scanning calorimetry, X-ray diffraction, cryo-electron microscopy, 31P NMR static powder patterns and 13C MAS/NMR. Mixtures of phosphatidylcholine with (16:1)9 acyl chains and 0.6 mol fraction cholesterol, after being heated to 100 degrees C, can form an ordered array with periodicity 14 nm which may be indicative of a cubic phase. Our results indicate that the formation of highly curved bilayer structures, such as those required for membrane fusion, can occur in mixtures of cholesterol with certain phosphatidylcholines that do not form non-lamellar structures in the absence of cholesterol. We also determine the polymorphic behavior of mixtures of symmetric phosphatidylcholines with cholesterol. Species of phosphatidylcholine with (20:1)11, (22:1)13 or (24:1)15 acyl chains in mixtures with 0.6-0.8 mol fraction cholesterol undergo a transition to the hexagonal phase at temperatures 70-80 degrees C. This is not the case for phosphatidylcholine with (18:1)6 acyl chains which remains in the lamellar phase up to 100 degrees C when mixed with as much as 0.8 mol fraction cholesterol. Thus, the polymorphic behavior of mixtures of phosphatidylcholine and cholesterol is not uncommon and is dependent on the intrinsic curvature of the phospholipid. Crystals of cholesterol can be detected in mixtures of all of these phosphatidylcholines at sufficiently high cholesterol mole fraction. What is unusual about the formation of these crystals in several cases is that cholesterol crystals are present in the monohydrate form in preference to the anhydrous form. Furthermore, after heating to 100 degrees C and recooling, the cholesterol crystals are again observed to be in the monohydrate form, although pure cholesterol crystals require many hours to rehydrate after being heated to 100 degrees C. Both the nature of the acyl chain as well as the mole fraction cholesterol determine whether cholesterol crystals in mixtures with the phospholipids will be in the monohydrate or in the anhydrous form.  相似文献   

16.
The effect of PDC-109 binding to dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) and supported membranes was investigated by (31)P NMR spectroscopy and atomic force microscopy. Additionally, the effect of cholesterol on the binding of PDC-109 to phosphatidylcholine (PC) membranes was studied. Binding of PDC-109 to MLVs of DMPC and DPPG induced the formation of an isotropic signal in their (31)P NMR spectra, which increased with increasing protein/lipid ratio and temperature, consistent with protein-induced disruption of the MLVs and the formation of small unilamellar vesicles or micelles but not inverse hexagonal or cubic phases. Incorporation of cholesterol in the DMPC MLVs afforded a partial stabilization of the lamellar structure, consistent with previous reports of membrane stabilization by cholesterol. AFM results are consistent with the above findings and show that addition of PDC-109 leads to a complete breakdown of PC membranes. The fraction of isotropic signal in (31)P NMR spectra of DPPG in the presence of PDC-109 was less than that of DMPC under similar conditions, suggesting a significantly higher affinity of the protein for PC. Confocal microscopic studies showed that addition of PDC-109 to human erythrocytes results in a disruption of the plasma membrane and release of hemoglobin into the solution, which was dependent on the protein concentration and incubation time.  相似文献   

17.
Measurements of hydration and water self diffusion in lamellar phases of the ternary system: phosphatidylcholine/cholesterol/water have been made using pulse NMR relaxation methods. Systems containing phosphatidylcholine and cholesterol in a 1 : 1 mol ratio with varying water contents are studied at 20.5°C. The results indicate that 12 water molecules corresponds to complete hydration of the phosphatidylcholine/cholesterol unit, and in the region of this hydration a 4-fold decrease in water diffusion occurs. The nature of the bound water and its relationship to phase stability and overall water mobility in the system are discussed. It is concluded that at the stoichiometric composition the diffusion decreases due to the relative immobility of the bound water. The implications in terms of permeability regulation in the aqueous channels by water content and hydration are cited.  相似文献   

18.
Measurements of hydration and water self diffusion in lamellar phases of the ternary system: phosphatidylcholine/cholesterol/water have been made using pulse NMR relaxation methods. Systems containing phosphatidylcholine and cholesterol in a 1:1 mol ratio with varying water contents are studied at 20.5 degrees C. The results indicate that 12 water molecules corresponds to complete hydration of the phosphatidylcholine/cholesterol unit, and in the region of this hydration a 4-fold decrease in water diffusion occurs. The nature of the bound water and its relationship to phase stability and overall water mobility in the system are discussed. It is concluded that at the stoichiometric composition the diffusion decreases due to the relative immobility of the bound water. The implications in terms of permeability regulation in the aqueous channels by water content and hydration are cited.  相似文献   

19.
The uptake of cholesterol (CHL) by serum high density lipoprotein (HDL) delipidated apoproteins and phospholipid-apoprotein recombinants has been studied with two methods; by incubation with Celite-dispersed cholesterol or with cholesterol crystals. The apoproteins bind very small amounts of cholesterol with a maximum of about 6 micrograms/mg apoprotein. Recombinants with dimyristoyl phosphatidylcholine (DMPC) or egg phosphatidylcholine (EPC) as phospholipid component gave similar values for cholesterol uptake. The initial rate for uptake from Celite-cholesterol by recombinants was high (0.1 mol cholesterol/mol phospholipid/h) and somewhat higher than that for phospholipid vesicles. The maximal uptake was by gel filtration shown to depend on the size of the complexes with values about 0.95 mol cholesterol per phospholipid for vesicular complexes, 0.75 for discoidal complexes and between 0.5 and 0.2 for small 'protein-rich' complexes. During the incubation of recombinants with cholesterol there was considerable decomposition of discoidal complexes and formation of larger ones. The results show that phospholipid-apoprotein complexes are efficient acceptors for cholesterol but also that about 25% of the phospholipid in the discoidal complexes is excluded from interaction with cholesterol by interaction with apoprotein.  相似文献   

20.
Sonication of lysophosphatidylcholine (lysoPC; 20 mumol/mL) and cholesterol (chol) in aqueous medium produces lamellar structures over a wide range of concentrations. From 25 to 47 mol % cholesterol, electron microscopy (EM) after negative staining showed extended stacklike lamellae about 40 A thick. From 50 to 60 mol % chol, freeze-fracture EM showed homogeneous populations of small unilamellar vesicles averaging 260-310 A in diameter. Phosphorus-31 nuclear magnetic resonance was used to characterize the stacklike lamellae and to measure the distribution of the lysophospholipid between the outer and inner leaflet of the vesicles as a function of sterol concentration. We found that in lysoPC/chol dispersions containing less than equimolar amounts of cholesterol (25-47 mol %), the entire phosphorus signal (40.5 ppm) was shifted downfield by 10.5 ppm upon addition of Pr3+ (2.4 mM), consistent with the stacklike lamellar structures in which all lysoPC head groups are accessible to the ions. By contrast, addition of Pr3+ to lysoPC/chol vesicles containing equimolar or higher amounts of cholesterol (up to 60 mol %) gave rise to two phosphorus peaks. The more intense downfield signal (51.0 ppm) responsive to paramagnetic ions was assigned to lysoPC located in the outer vesicle leaflet. The upfield signal (40.5 ppm), which was not affected by the ions, was assigned to inside lysoPC. For lysoPC/chol (1:1) vesicles, an outside to inside lysophospholipid ratio (Ro/i) of 6.5 was determined. Essentially the same Ro/i value (6.7) was obtained on lysoPC/chol (1:1) vesicles which after dialysis contained only entrapped Pr3+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号