首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microcosm tests simulating bioslurry reactors with 40% soil content, containing high concentrations of TNT and/or RDX, and spiked with either [14C]-TNT or [14C]-RDX were conducted to investigate the fate of explosives and their metabolites in bioslurry treatment processes. RDX is recalcitrant to indigenous microorganisms in soil and activated sludge under aerobic conditions. However, soil indigenous microorganisms alone were able to mineralize 15% of RDX to CO2 under anaerobic condition, and supplementation of municipal anaerobic sludge as an exogenous source of microorganisms significantly enhanced the RDX mineralization to 60%. RDX mineralizing activity of microorganisms in soil and sludge was significantly inhibited by the presence of TNT. TNT mineralization was poor (< 2%) and was not markedly improved by the supplement of aerobic or anaerobic sludge. Partitioning studies of [14C]-TNT in the microcosms revealed that the removal of TNT during the bioslurry process was due mainly to the transformation of TNT and irreversible binding of TNT metabolites onto soil matrix. In the case of RDX under anaerobic conditions, a significant portion (35%) of original radioactivity was also incorporated into the biomass and bound to the soil matrix.  相似文献   

2.
The growth and survival of several rifampin-resistant isolates of denitrifying bacteria were examined under anaerobic (denitrifying) and aerobic conditions. Two isolates added to nonsterile Bruno soil at densities of between 10(4) and 10(6) CFU g dry soil-1 exhibited an initial period of growth followed by a gradual decline in numbers. After 28 days, both isolates maintained viable populations of between 10(4) and 10(5) CFU g dry soil-1 under both denitrifying and aerobic conditions. One of the isolates consistently grew better under denitrifying conditions, and the other isolate consistently grew better under aerobic conditions. The relative pattern of denitrifying versus aerobic growth for each organism was not affected by the addition of glucose. The growth yields of the two isolates varied with soil type, but the relative pattern of denitrifying versus aerobic growth was consistent in three soils with greatly different properties. Five of nine isolates introduced into Bruno soil at low population densities (approximately 10(5) CFU g dry soil-1) exhibited better growth after 2 days under denitrifying conditions. It was not possible to predict the prevalence of the denitrifying or aerobic mode of growth in nonsterile soil from the growth characteristics of the isolates in pure cultures or sterile soil.  相似文献   

3.
The growth and survival of several rifampin-resistant isolates of denitrifying bacteria were examined under anaerobic (denitrifying) and aerobic conditions. Two isolates added to nonsterile Bruno soil at densities of between 10(4) and 10(6) CFU g dry soil-1 exhibited an initial period of growth followed by a gradual decline in numbers. After 28 days, both isolates maintained viable populations of between 10(4) and 10(5) CFU g dry soil-1 under both denitrifying and aerobic conditions. One of the isolates consistently grew better under denitrifying conditions, and the other isolate consistently grew better under aerobic conditions. The relative pattern of denitrifying versus aerobic growth for each organism was not affected by the addition of glucose. The growth yields of the two isolates varied with soil type, but the relative pattern of denitrifying versus aerobic growth was consistent in three soils with greatly different properties. Five of nine isolates introduced into Bruno soil at low population densities (approximately 10(5) CFU g dry soil-1) exhibited better growth after 2 days under denitrifying conditions. It was not possible to predict the prevalence of the denitrifying or aerobic mode of growth in nonsterile soil from the growth characteristics of the isolates in pure cultures or sterile soil.  相似文献   

4.
Although aerobic degradation of ethylene glycol is well documented, only anaerobic biodegradation via methanogenesis or fermentation has been clearly shown. Enhanced ethylene glycol degradation has been demonstrated by microorganisms in the rhizosphere of shallow-rooted plants such as alfalfa and grasses where conditions may be aerobic, but has not been demonstrated in the deeper rhizosphere of poplar or willow trees where conditions are more likely to be anaerobic. This study evaluated ethylene glycol degradation under nitrate-, and sulphate-reducing conditions by microorganisms from the rhizosphere of poplar and willow trees planted in the path of a groundwater plume containing up to 1.9 mol l−1 (120 g l−1) ethylene glycol and, the effect of fertilizer addition when nitrate or sulphate was provided as a terminal electron acceptor (TEA). Microorganisms in these rhizosphere soils degraded ethylene glycol using nitrate or sulphate as TEAs at close to the theoretical stoichiometric amounts required for mineralization. Although the added nitrate or sulphate was primarily used as TEA, TEAs naturally present in the soil or CO2 produced from ethylene glycol degradation were also used, demonstrating multiple TEA usage. Anaerobic degradation produced acetaldehyde, less acetic acid, and more ethanol than under aerobic conditions. Although aerobic degradation rates were faster, close to 100% disappearance was eventually achieved anaerobically. Degradation rates under nitrate-reducing conditions were enhanced upon fertilizer addition to achieve rates similar to aerobic degradation with up to 19.3 mmol (1.20 g) of ethylene glycol degradation l−1 day−1 in poplar soils. This is the first study to demonstrate that microorganisms in the rhizosphere of deep rooted trees like willow and poplar can anaerobically degrade ethylene glycol. Since anaerobic biodegradation may significantly contribute to the phytoremediation of ethylene glycol in the deeper subsurface, the need for “pump and treat” or an aerobic treatment would be eliminated, hence reducing the cost of treatment.  相似文献   

5.
6.
7.
除草剂二氯喹啉酸对水稻田土壤中微生物种群的影响   总被引:17,自引:1,他引:17  
对好氧微生物采用平板稀释法,厌氧微生物采用最大或然计数法和滚管法研究土壤中施入0.33、0.67、1.00、1.33、2.00μg·g^-1干土除草剂二氯喹啉酸后对土壤可培养微生物种群数量的影响。结果表明,各种微生物对二氯喹啉酸的反应随其施加浓度的不同而有差异.二氯喹啉酸对水稻田土壤中好氧性细菌、水解发酵细菌、反硝化细菌数量的影响都是短暂的,第33d时均能恢复至接近对照水平,浓度在1.33μg·g^-1干土以下时二氯喹啉酸促进真菌数量增加,高于该浓度时则具有抑制作用.施用各浓度二氯喹啉酸初期,对土壤中放线菌和产甲烷菌有一定程度的抑制效应,但低浓度时抑制效应在培养后期消失.正常土壤施用量的二氯喹啉酸(即0.67μg·g^-1干土)对水田土壤微生物各种群无实质危害级农药。  相似文献   

8.
Pentachlorophenol (PCP) use as a general biocide, particularly for treating wood, has led to widespread environmental contamination. Biodegradation has emerged as the main mechanism for PCP degradation in soil and groundwater and a key strategy for remediation. Examining the microbial biodegrading potential for PCP at a contaminated site is crucial in determining its fate. Hundreds of studies have been published on PCP microbial degradation, but few have described the biodegradation of PCP that has been in contact with soils for many years. The bioavailability of “aged” hydrophobic organics is a significant concern. PCP- and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)-contaminated soil samples from several depths at a former wood treatment site were placed under varying conditions in the laboratory to determine the anaerobic and aerobic potential for biodegradation of chlorophenols at the site. PCP biodegradation occurred in both anaerobic and aerobic soil samples. Rapid aerobic degradation occurred in samples spiked with 2- and 4-chlorophenol, but not with 3-chlorophenol. Reductive dechlorination of PCP in anaerobic samples resulted in the accumulation of 3-chlorophenol. In most anaerobic replicates, 3-chlorophenol was degraded with the appearance of detectable, but not quantifiable amounts of phenol. These results indicate excellent potential for remediation at the site using the indigenous microorganisms under both aerobic and anaerobic conditions. However, a fraction of the PCP was unavailable for degradation.  相似文献   

9.
Fate of explosives and their metabolites in bioslurry treatment processes   总被引:1,自引:0,他引:1  
Microcosm tests simulating bioslurry reactors with 40% soilcontent, containing high concentrations of TNT and/or RDX,and spiked with either [14C]-TNT or[14C]-RDX were conducted to investigate the fate ofexplosives and their metabolites in bioslurry treatment processes.RDX is recalcitrant to indigenous microorganisms in soil andactivated sludge under aerobic conditions. However, soilindigenous microorganisms alonewere able to mineralize 15% of RDX to CO2 underanaerobic condition, and supplementation of municipal anaerobicsludge as an exogenous source of microorganismssignificantly enhanced the RDX mineralization to 60%. RDXmineralizing activity of microorganisms in soil and sludge wassignificantly inhibited by the presence of TNT. TNTmineralization was poor (< 2%) and was not markedlyimproved by the supplement ofaerobic or anaerobic sludge. Partitioning studies of[14C]-TNT in the microcosmsrevealed that the removal of TNTduring the bioslurry process was due mainly to thetransformation of TNT and irreversiblebinding of TNT metabolites onto soil matrix. In the case ofRDX under anaerobic conditions,a significant portion (35%) of original radioactivity wasalso incorporated into the biomass andbound to the soil matrix.  相似文献   

10.
Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation.  相似文献   

11.
The aim of the study was to investigate the effect of nitrate on anaerobic color removal efficiencies. For this aim, anaerobic–aerobic sequencing batch reactor (SBR) fed with a simulated textile effluent including Remazol Brilliant Violet 5R azo dye was operated with a total cycle time of 12 h, including anaerobic (6 h) and aerobic cycles (6 h). Microorganism grown under anaerobic phase of the reactor was exposed to different amounts of competitive electron acceptor (nitrate) and performance of the system was determined by monitoring color removal efficiency, nitrate removal, nitrite formation and removal, oxidation reduction potential, color removal rate, chemical oxygen demand (COD), specific anaerobic enzyme (azo reductase) and aerobic enzyme (catechol 1,2 dioxygenase), and formation and removal of aromatic amines. Variations of population dynamics of microorganisms exposed to various amount of nitrate were identified by denaturing gradient gel electrophoresis (DGGE). It was found that nitrate has adverse effect on anaerobic color removal efficiency and color removal was achieved after denitrification process was completed. It was found that nitrate stimulates the COD removal efficiency and accelerates the COD removal in the first hour of anaerobic phase. About 90 % total COD removal efficiencies were achieved in which microorganism exposed to increasing amount of nitrate. Population dynamics of microorganisms exposed to various amount of nitrate were changed and diversity was increased.  相似文献   

12.
Recent observations suggest that permafrost thaw may create two completely different soil environments: aerobic in relatively well‐drained uplands and anaerobic in poorly drained wetlands. The soil oxygen availability will dictate the rate of permafrost carbon release as carbon dioxide (CO2) and as methane (CH4), and the overall effects of these emitted greenhouse gases on climate. The objective of this study was to quantify CO2 and CH4 release over a 500‐day period from permafrost soil under aerobic and anaerobic conditions in the laboratory and to compare the potential effects of these emissions on future climate by estimating their relative climate forcing. We used permafrost soils collected from Alaska and Siberia with varying organic matter characteristics and simultaneously incubated them under aerobic and anaerobic conditions to determine rates of CO2 and CH4 production. Over 500 days of soil incubation at 15 °C, we observed that carbon released under aerobic conditions was 3.9–10.0 times greater than anaerobic conditions. When scaled by greenhouse warming potential to account for differences between CO2 and CH4, relative climate forcing ranged between 1.5 and 7.1. Carbon release in organic soils was nearly 20 times greater than mineral soils on a per gram soil basis, but when compared on a per gram carbon basis, deep permafrost mineral soils showed carbon release rates similar to organic soils for some soil types. This suggests that permafrost carbon may be very labile, but that there are significant differences across soil types depending on the processes that controlled initial permafrost carbon accumulation within a particular landscape. Overall, our study showed that, independent of soil type, permafrost carbon in a relatively aerobic upland ecosystems may have a greater effect on climate when compared with a similar amount of permafrost carbon thawing in an anaerobic environment, despite the release of CH4 that occurs in anaerobic conditions.  相似文献   

13.
Consumption and production of atmospheric CO was measured under field conditions in three different types of soil. CO was consumed by an apparent first-order reaction and produced by an apparent zero-order reaction, resulting in a dynamic equilibrium with the consumption of atmospheric CO as the net reaction. CO consumption was higher in summer than in winter. Laboratory experiments on five different soil types showed that CO consumption was strongly inhibited by the presence of streptomycin or cycloheximide (Actidione), or both. Thus, eucaryotic as well as procaryotic microorganisms were apparently responsible for the observed CO consumption. The aerobic carboxydobacterium Pseudomonas carboxydovorans added to sterile soil was able to utilize the low amounts (ca. 0.7 ppmv) of CO present in laboratory air. CO was consumed by soil under aerobic as well as anaerobic conditions. Anaerobic preincubation of the soil stimulated the anaerobic CO consumption and reduced the aerobic CO consumption. In contrast to CO consumption, CO production was stimulated by autoclaving, by ultraviolet-irradiation, by fumigation with NH3 or CHCl3, by treatment with streptomycin or cycloheximide or both, by addition of NaCN, NaN3, or Na2HAsO4 (or all three) in the presence of glucose under an atmosphere of pure oxygen, or by a drying and rewetting procedure. The consumption of atmospheric CO by soil is a microbial process, but the production of CO is apparently not a metabolic process.  相似文献   

14.
15.
N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway.  相似文献   

16.
Ring-U-[14C]methoxychlor [1,1-bis(p-methoxyphenyl)-2,2,2-trichloroethane] was incubated in soil under aerobic and anaerobic conditions. Primary degradation of methoxychlor occurred under anaerobic conditions, but not under aerobic conditions, after 3 months of incubation. Analysis of soil extracts, using gas chromatography, demonstrated that only 10% of the compound remained at initial concentrations of 10 and 100 ppm (wt/wt) of methoxychlor. Evidence is presented that a dechlorination reaction was responsible for primary degradation of methoxychlor. Analysis of soils treated with 100 ppm of methoxychlor in the presence of 2% HgCl2 showed that 100% of the compound remained after 3 months, indicating that degradation in the unpoisoned flasks was biologically mediated. Methanogenic organisms, however, are probably not involved, as strong inhibition of methane production was observed in all soils treated with methoxychlor. During the 3-month incubation period, little or no evaluation of 14CO2 or 14CH4 occurred under either aerobic or anaerobic conditions. Cometabolic processes may be responsible for the extensive molecular changes which occurred with methoxychlor because the rate of its disappearance from soil was observed to level off after exhaustion of soil organic matter. After this incubation period, soils previously incubated under anaerobic conditions were converted to aerobic conditions. The rates of 14CO2 evolution from soils exposed to anaerobic and aerobic sequences of environments ranged from 10- to 70-fold greater than that observed for soils exposed solely to an aerobic environment.  相似文献   

17.
Microbial hydrocarbon degradation in soil was studied during periodical aerobic/anaerobic switching and under purely aerobic conditions by using a pilot-scale plant with diesel-fuel-contaminated sand. The system worked according to the percolation principle with controlled circulation of process water and aeration. Periodical switching between 4 h of aerobic and 2 h of anaerobic conditions was achieved by repeated saturation of the soil with water. Whatever the cultivation mode, less than 50% of the diesel was degraded after 650 h because the hydrocarbons were adsorbed. Contrary to expectations, aerobic/anaerobic changes neither accelerated the rate of degradation nor reduced the residual hydrocarbon content of the soil. Obviously the pollutant degradation rate was determined mainly by transport phenomena and less by the efficiency of microbial metabolism. The total mass of oxygen consumed and carbon dioxide produced was greater under aerobic/anaerobic changing than under aerobic conditions, although the mass of hydrocarbons degraded was nearly the same. As shown by an overall balance of microbial growth and by a carbon balance, the growth yield coefficient was smaller during aerobic/anaerobic changes than under aerobic conditions. Received: 25 November 1997 /  Received revision: 15 January 1998 / Accepted: 18 January 1998  相似文献   

18.
小叶章生态系统根际土壤微生物及CO2、CH4、N2O动态   总被引:3,自引:0,他引:3  
徐小锋  宋长春  宋霞 《生态学报》2005,25(1):182-187
研究了培养 4 5 d的小叶章根际土壤微生物和二氧化碳 ,甲烷及氧化亚氮产生与消耗之间的关系。结果表明好氧微生物与厌氧微生物的空间分布与甲烷 ,二氧化碳及氧化亚氮的产生和氧化有着密切的关系。好氧微生物与甲烷产生呈负相关 ,与二氧化碳和氧化亚氮的产生呈正相关关系。厌氧微生物与甲烷的产生呈正相关 ,与二氧化碳和氧化亚氮的产生呈负相关关系  相似文献   

19.
为了解非豆科固氮树种的固氮酶和N_2O还原酶(Nos)活性,采用乙炔还原法和乙炔抑制技术对细枝木麻黄(Casuarina cunninghamiana)和江南桤木(Alnus trabeculosa)离体根瘤及立地土壤的两种酶活性进行了研究。结果表明,离体根瘤只在厌氧条件下有固氮酶活性,在好氧条件下有Nos活性。根瘤区根际土和非根瘤区根际土的固氮酶活性在好氧条件大于厌氧条件,Nos活性只表现在厌氧条件下。在好氧条件下,根瘤区根际土和非根瘤区根际土的固氮酶活性无显著差异;根瘤区根际土的Nos活性显著大于非根瘤区根际土。除离体根瘤在好氧条件下不表现固氮酶活性外,细枝木麻黄和桤木的离体根瘤、根瘤区根际土和非根瘤区根际土的固氮酶活性均都大于Nos活性。好氧条件下根瘤区根际土的固氮酶活性与非根瘤区根际土的呈极显著正相关,而厌氧条件下根瘤的固氮酶活性与好氧条件下根瘤区根际土和非根瘤区根际土固氮酶活性、好氧条件下根瘤的Nos活性与厌氧条件下根瘤区根际土和非根瘤区根际土Nos活性均呈极显著负相关。这为研究弗兰克氏菌结瘤植物共生固氮体系对N2O汇强度的影响和调控奠定基础。  相似文献   

20.
Studies conducted in an aquifer contaminated by creosote suggest that quinoline is converted to 2(1H)quinolinone by an indigenous consortium of microorganisms. Laboratory microbial experiments using H218O indicate that water is the source of the oxygen atom for this hydroxylation reaction under aerobic and anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号