首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this review we propose that there are sex differences in how men and women enter onto the path that can lead to addiction. Males are more likely than females to engage in risky behaviors that include experimenting with drugs of abuse, and in susceptible individuals, they are drawn into the spiral that can eventually lead to addiction. Women and girls are more likely to begin taking drugs as self-medication to reduce stress or alleviate depression. For this reason women enter into the downward spiral further along the path to addiction, and so transition to addiction more rapidly. We propose that this sex difference is due, at least in part, to sex differences in the organization of the neural systems responsible for motivation and addiction. Additionally, we suggest that sex differences in these systems and their functioning are accentuated with addiction. In the current review we discuss historical, cultural, social and biological bases for sex differences in addiction with an emphasis on sex differences in the neurotransmitter systems that are implicated.  相似文献   

2.
Drug addiction: the neurobiology of disrupted self-control   总被引:1,自引:0,他引:1  
The nature of addiction is often debated along moral versus biological lines. However, recent advances in neuroscience offer insights that might help bridge the gap between these opposing views. Current evidence shows that most drugs of abuse exert their initial reinforcing effects by inducing dopamine surges in limbic regions, affecting other neurotransmitter systems and leading to characteristic plastic adaptations. Importantly, there seem to be intimate relationships between the circuits disrupted by abused drugs and those that underlie self-control. Significant changes can be detected in circuits implicated in reward, motivation and/or drive, salience attribution, inhibitory control and memory consolidation. Therefore, addiction treatments should attempt to reduce the rewarding properties of drugs while enhancing those of alternative reinforcers, inhibit conditioned memories and strengthen cognitive control. We posit that the time has come to recognize that the process of addiction erodes the same neural scaffolds that enable self-control and appropriate decision making.  相似文献   

3.
The hedonic properties of food can stimulate feeding behaviour even when energy requirements have been met, contributing to weight gain and obesity. Similarly, the hedonic effects of drugs of abuse can motivate their excessive intake, culminating in addiction. Common brain substrates regulate the hedonic properties of palatable food and addictive drugs, and recent reports suggest that excessive consumption of food or drugs of abuse induces similar neuroadaptive responses in brain reward circuitries. Here, we review evidence suggesting that obesity and drug addiction may share common molecular, cellular and systems-level mechanisms.  相似文献   

4.
Saal D  Dong Y  Bonci A  Malenka RC 《Neuron》2003,37(4):577-582
Drug seeking and drug self-administration in both animals and humans can be triggered by drugs of abuse themselves or by stressful events. Here, we demonstrate that in vivo administration of drugs of abuse with different molecular mechanisms of action as well as acute stress both increase strength at excitatory synapses on midbrain dopamine neurons. Psychoactive drugs with minimal abuse potential do not cause this change. The synaptic effects of stress, but not of cocaine, are blocked by the glucocorticoid receptor antagonist RU486. These results suggest that plasticity at excitatory synapses on dopamine neurons may be a key neural adaptation contributing to addiction and its interactions with stress and thus may be an attractive therapeutic target for reducing the risk of addiction.  相似文献   

5.
Drugs and food exert their reinforcing effects in part by increasing dopamine (DA) in limbic regions, which has generated interest in understanding how drug abuse/addiction relates to obesity. Here, we integrate findings from positron emission tomography imaging studies on DA's role in drug abuse/addiction and in obesity and propose a common model for these two conditions. Both in abuse/addiction and in obesity, there is an enhanced value of one type of reinforcer (drugs and food, respectively) at the expense of other reinforcers, which is a consequence of conditioned learning and resetting of reward thresholds secondary to repeated stimulation by drugs (abuse/addiction) and by large quantities of palatable food (obesity) in vulnerable individuals (i.e. genetic factors). In this model, during exposure to the reinforcer or to conditioned cues, the expected reward (processed by memory circuits) overactivates the reward and motivation circuits while inhibiting the cognitive control circuit, resulting in an inability to inhibit the drive to consume the drug or food despite attempts to do so. These neuronal circuits, which are modulated by DA, interact with one another so that disruption in one circuit can be buffered by another, which highlights the need of multiprong approaches in the treatment of addiction and obesity.  相似文献   

6.
Lateral hypothalamic neuropeptides in reward and drug addiction   总被引:6,自引:0,他引:6  
The hypothalamus has been long considered important in feeding and other motivated behaviors. The identification of neuropeptides expressed in the hypothalamus has initiated efforts to better elucidate the underlying molecular mechanisms involved. The neuropeptides orexin and melanin-concentrating hormone (MCH) are expressed in the lateral hypothalamus (LH) and have been implicated in regulation of feeding behavior. Neurons expressing these neuropeptides have extensive projections to regions of the brain important for behavioral responses to drugs of abuse, raising the possibility that the pathways may also be important in addiction. Regulation of LH intracellular signaling pathways in response to drugs of abuse supports a role for the LH neuropeptides in addiction.  相似文献   

7.
Chronic use of drugs of abuse results in neurochemical, morphological and behavioral plasticity that underlies the emergence of compulsive drug seeking and vulnerability to relapse during periods of attempted abstinence. Identifying and reversing addiction‐relevant plasticity is seen as a potential point of pharmacotherapeutic intervention in drug‐addicted individuals. Despite considerable advances in our understanding of the actions of drugs of abuse in the brain, this information has thus far yielded few novel treatment options addicted individuals. MicroRNAs are small noncoding RNAs that can each regulate the translation of hundreds to thousands of messenger RNAs. The highly pleiotropic nature of miRNAs has focused attention on their contribution to addiction‐relevant structural and functional plasticity in the brain and their potential utility as targets for medications development. In this review, we discuss the roles of miRNAs in synaptic plasticity underlying the development of addiction and then briefly discuss the possibility of using circulating miRNA as biomarkers for addiction.  相似文献   

8.
Changes in gene expression in brain reward regions are thought to contribute to the pathogenesis and persistence of drug addiction. Recent studies have begun to focus on the molecular mechanisms by which drugs of abuse and related environmental stimuli, such as drug-associated cues or stress, converge on the genome to alter specific gene programs. Increasing evidence suggests that these stable gene expression changes in neurons are mediated in part by epigenetic mechanisms that alter chromatin structure on specific gene promoters. This review discusses recent findings from behavioral, molecular and bioinformatic approaches being used to understand the complex epigenetic regulation of gene expression by drugs of abuse. This novel mechanistic insight might open new avenues for improved treatments of drug addiction.  相似文献   

9.
A consistent finding in drug abuse research is that males and females show differences in their response to drugs of abuse. In women, increased plasma estradiol is associated with increased vulnerability to the psychostimulant and reinforcing effects of drugs of abuse. Our laboratory has focused on the role of estradiol in modulating the response to cocaine. We have seen that ovariectomy increases the locomotor response to a single cocaine injection, whereas estradiol exacerbates the locomotor response to repeated cocaine administration. Cocaine-induced sensitization of brain activity, as measured by fMRI, is also dependent on plasma estradiol. Moreover, we observed that although all ovariectomized rats show conditioned place preference to cocaine, it is more robust in ovariectomized rats with estradiol.Opioid receptors are enriched in brain regions associated with pleasure and reward. We find that in females, the effectiveness of kappa opioid agonists in decreasing the locomotor response to repeated cocaine varies with plasma estradiol. We also find that estradiol regulates the density of mu opioid receptors in brains areas associated with reward. These data hint that in females, estradiol modulates the behavioral effects of cocaine by regulating mu and kappa opioid signaling in mesocorticolimbic brain structures. Identifying the mechanisms that mediate differences in vulnerability to drugs of abuse may lead to effective therapeutic strategies for the treatment and prevention of addiction and relapse. We encourage health practitioners treating persons addicted to drugs to consider gender differences in response to particular pharmacotherapies, as well the sex steroid milieu of the patient.  相似文献   

10.
11.
Drug addiction is widely recognized to afflict some but not all individuals by virtue of underlying risk markers and traits involving multifaceted interactions between polygenic and external factors. Remarkably, only a small proportion of individuals exposed to licit and illicit drugs develop compulsive drug‐seeking behavior, maintained in the face of adverse consequences and associated detrimental patterns of drug intake involving extended and repeated bouts of binge intoxication, withdrawal and relapse. As a consequence, research has increasingly endeavored to identify distinctive neurobehavioral mechanisms and endophenotypes that predispose individuals to compulsive drug use. However, research in active drug users is hampered by the difficulty in categorizing putatively causal behavioral traits prior to the initiation of drug use. By contrast, research in experimental animals is often hindered by the validity of approaches used to investigate the neural and psychological mechanisms of compulsive drug‐seeking habits in humans. Herein, we survey and discuss the principal findings emanating from preclinical animal research on addiction and highlight how specific behavioral endophenotypes of presumed genetic origin (e.g. trait anxiety, novelty preference and impulsivity) differentially contribute to compulsive forms of drug seeking and taking and, in particular, how these differentiate between different classes of stimulant and non‐stimulant drugs of abuse.  相似文献   

12.
X Wu  H H Gu 《Gene》1999,233(1-2):163-170
Drug abuse is a serious problem in the United States and in the world. Cocaine and amphetamines, widely used drugs of abuse, bind to dopamine (DA), serotonin, and norepinephrine transporters with high affinity and block their functions. It is believed that the dopamine transporter plays a key role in the mechanism of cocaine addiction. Because a good portion of our knowledge about drug addiction is derived from studying mouse as an animal model, it is essential to compare the properties of dopamine transporter from human and mouse. We report here the cloning of the mouse dopamine transporter (mDAT) cDNA and its expression and comparison with the human DAT. The 3.4 kilobase (kb) cDNA encodes a polypeptide that is 93.5% identical to the hDAT, with 619 amino acid residues and a calculated molecular weight of 68.8kDa. Dopamine transporters from mouse and human were stably expressed in the same parental MDCK cells and their properties were compared. The Michaelis-Menten constant Km values are 2.0 microM for mDAT and 2.4 microM for hDAT. Mouse and human DAT were also compared for drug inhibition profiles. Dopamine transporters from the two species have the same sensitivity to amphetamine (Kd: 0.75 microM) and bupropion (Kd: 1.5 microM). However, hDAT is more sensitive than mDAT to cocaine (Kd: 0.14 microM and 0. 29 microM respectively) and to ritalin (Kd: 0.038 microM and 0. 12 microM respectively). The cloning of mDAT cDNA provides an important tool for further study of the mechanism of drug addiction using mouse as an animal model.  相似文献   

13.
Genetic factors are believed to account for 30-50% of the risk for cocaine and heroin addiction. Dynorphin peptides, derived from the prodynorphin (PDYN) precursor, bind to opioid receptors, preferentially the kappa-opioid receptor, and may mediate the aversive effects of drugs of abuse. Dynorphin peptides produce place aversion in animals and produce dysphoria in humans. Cocaine and heroin have both been shown to increase expression of PDYN in brain regions relevant for drug reward and use. Polymorphisms in PDYN are therefore hypothesized to increase risk for addiction to drugs of abuse. In this study, 3 polymorphisms in PDYN (rs1022563, rs910080 and rs1997794) were genotyped in opioid-addicted [248 African Americans (AAs) and 1040 European Americans (EAs)], cocaine-addicted (1248 AAs and 336 EAs) and control individuals (674 AAs and 656 EAs). Sex-specific analyses were also performed as a previous study identified PDYN polymorphisms to be more significantly associated with female opioid addicts. We found rs1022563 to be significantly associated with opioid addiction in EAs [P = 0.03, odds ratio (OR) = 1.31; false discovery rate (FDR) corrected q-value]; however, when we performed female-specific association analyses, the OR increased from 1.31 to 1.51. Increased ORs were observed for rs910080 and rs199774 in female opioid addicts also in EAs. No statistically significant associations were observed with cocaine or opioid addiction in AAs. These data show that polymorphisms in PDYN are associated with opioid addiction in EAs and provide further evidence that these risk variants may be more relevant in females.  相似文献   

14.
Women of reproductive age who use and abuse psychoactive drugs and alcohol present a special challenge to primary care physicians. There are compelling medical reasons for identifying and intervening with pregnant women who are addicted or have alcoholism. The teratogenicity of all drugs of abuse and alcohol, the risk of infection with the acquired immunodeficiency syndrome (AIDS), and the potential for full recovery of a pregnant woman from addiction are some of the reasons that identification and intervention in the problem are indicated. Whether encountered in the clinic setting or in private practice, chemically dependent pregnant or postpartum women are usually responsive to appropriate physician interventions that include a detailed and caring confrontation- and advocacy-oriented support. Complex legal and ethical issues surround perinatal addiction including the role of toxicologic screening, reports to child welfare services, issues in noncompliance, and interdisciplinary case management.  相似文献   

15.
Drug addiction is a complex disorder, evoking significant changes in the proteome of the central nervous system. To check if there are also changes in the lipidomic profiles we used desorption electrospray-MS technique for imaging of the brain slices of rats exposed to morphine, cocaine and amphetamine. Our investigations showed alternative regulation of selected lipid's levels in the central nervous system structures, under the influence of applied drugs. Results of our investigations can show changes in the brain treated with drugs of abuse in the new light, indicating role of the lipids in the addiction development.  相似文献   

16.
Drug addiction, characterized by high rates of relapse, is recognized as a kind of neuroadaptive disorder. Since the extracellular signal-regulated kinase (ERK) pathway is critical to neuroplasticity in the adult brain, understanding the role this pathway plays is important for understanding the molecular mechanism underlying drug addiction and relapse. Here, we review previous literatures that focus on the effects of exposure to cocaine, amphetamine, Δ9-tetrahydrocannabinol (THC), nicotine, morphine, and alcohol on ERK signaling in the mesocorticolimbic dopamine system; these alterations of ERK signaling have been thought to contribute to the drug’s rewarding effects and to the long-term maladaptation induced by drug abuse. We then discuss the possible upstreams of the ERK signaling pathway activated by exposure of drugs of abuse and the environmental cues previously paired with drugs. Finally, we argue that since ERK activation is a key molecular process in reinstatement of conditioned place preference and drug self-administration, the pharmacological manipulation of the ERK pathway is a potential treatment strategy for drug addiction. Haifeng Zhai and Yanqin Li contributed equally to this paper.  相似文献   

17.
18.
Experimental genetic approaches to addiction   总被引:4,自引:0,他引:4  
Laakso A  Mohn AR  Gainetdinov RR  Caron MG 《Neuron》2002,36(2):213-228
Drugs of abuse are able to elicit compulsive drug-seeking behaviors upon repeated administration, which ultimately leads to the phenomenon of addiction. Evidence indicates that the susceptibility to develop addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. Addiction is hypothesized to be a cycle of progressive dysregulation of the brain reward system that results in the compulsive use and loss of control over drug taking and the initiation of behaviors associated with drug seeking. The view that addiction represents a pathological state of reward provides an approach to identifying the factors that contribute to vulnerability, addiction, and relapse in genetic animal models.  相似文献   

19.
Opiates are not only potent analgesics but also drugs of abuse mainly because they produce euphoria. Chronic use of opiates results in the development of tolerance and dependence. Dr Marshall Nirenberg’s group at the National Institutes of Health (NIH) was the first to use a cellular model system of Neuroblastoma × Glioma hybrid cells (NG108-15) to study morphine addiction. They showed that opiates affect adenylyl cyclase (AC) by two opposing mechanisms mediated by the opiate receptor. Although the cellular mechanisms that cause addiction are not yet completely understood, the most observed correlative biochemical adaptation is the upregulation of AC. This model also provides the opportunity to look for compounds which could dissociate the acute effect of opiates from the delayed response, upregulation of AC, and thus lead to the discovery of non-addictive drugs. To identify small molecule compounds that can inhibit morphine-induced cAMP overshoot, we have validated and optimized a cell-based assay in a high throughput format that measures cellular cAMP production after morphine withdrawal. The assay performed well in the 1536-well plate format. The LOPAC library of 1,280 compounds was screened in this assay on a quantitative high-throughput screening (qHTS) platform. A group of compounds that can inhibit morphine-induced cAMP overshoot were identified. The most potent compounds are eight naloxone-related compounds, including levallorphan tartrate, naloxonazine dihydrochloride, naloxone hydrochloride, naltrexone hydrochloride, and naltriben methanesulfonate. The qHTS approach we used in this study will be useful in identifying novel inhibitors of morphine induced addiction from a larger scale screening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号