首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In addition to its visual function, the mammalian eye detects light for a range of behavioral and physiological responses that are separate and apart from sight. Recent studies have begun to shed light on the areas of the brain that respond to such 'non-visual' photoreception in the human eye.  相似文献   

2.
《Chronobiology international》2013,30(8):1066-1071
Disruption of the 24-h light-dark cycle has been implicated as an endocrine disruptor and linked to increased morbidity and mortality in animal studies. Previously reported measurements of circadian disruption in day-shift and rotating-shift nurses were compared with new mouse data where the light-dark patterns simulated shiftwork. Phasor magnitudes, a measure of circadian entrainment, were shown to be similar for humans and for mice when exposed to similar patterns of light and dark. Phasor analyses may be a useful method for quantitatively bridging ecological measurements of circadian disruption in human with parametric studies of health outcomes in a mouse model.  相似文献   

3.
4.
Much is known about the formal properties of circadian rhythm regulation and the physiological substrates underlying rhythmicity in nocturnal rodents, but relatively few studies have addressed circadian rhythm regulation in other mammalian taxonomic groups. In this study, some formal and functional aspects of circadian organization in a nocturnal dasyurid marsupial, the stripe-faced dunnart (Sminthopsis macroura), were analyzed. To determine phasic responses to discrete pulses of light, dunnarts were placed in constant darkness (DD) and were periodically administered pulses of bright light at different times of the animals' circadian day. Analysis of phase shifts in response to light indicated a phase response curve that was similar to responses observed in nocturnal rodents. To determine the possibility of extraretinal photoreception mediating photic entrainment, dunnarts were anesthetized and orbitally enucleated while maintained in a light-dark regimen (LD 14:10). All blinded dunnarts free-ran with periods (tau) that were similar to those observed in DD, indicating that entrainment is mediated through ocular photoreception. However, the data also indicated a decrease in activity in blind dunnarts during the last 3-5 hr of the dark phase, raising the possibility of some retention of photoreceptive capacities.  相似文献   

5.
Summary We have examined the effects of light on circadian locomotor rhythms in retinally degenerate mice (C57BL/6J mice homozygous for the rd allele: rd/rd). The sensitivity of circadian photoreception in these mice was determined by varying the irradiance of a 15 min light pulse (515 nm) given at circadian time 16 and meauring the magnitude of the phase shift of the locomotor rhythm. Experiments were performed on animals 80 days of age. Despite the loss of visual photoreceptors in the rd/rd retina, animals showed circadian responses to light that were indistinguishable from mice with normal retinas (rd/+ and +/+).While no photoreceptor outersegments were identified in the retina of rd/rd animals (80–100 days of age), we did identify a small number of perikarya that were immunoreactive for cone opsins, and even fewer cells that contained rod opsin. Using HPLC, we demonstrated the presence and photoisomerization of the rhodopsin chromophore 11-cis retinaldehyde. The rd/rd retinas contained about 2% of 11-cis retinaldehyde found in +/+ retinas. We have yet to determine whether the opsin immunoreactive perikarya or some other unidentified cell type mediate circadian light detection in the rd/rd retina.Abbreviations HPLC high-performance liquid chromatographyy  相似文献   

6.
In Drosophila melanogaster, disruption of night by even short light exposures results in degradation of the clock protein TIMELESS (TIM), leading to shifts in the fly molecular and behavioral rhythms. Several lines of evidence indicate that light entrainment of the brain clock involves the blue-light photoreceptor cryptochrome (CRY). In cryptochrome-depleted Drosophila (cry(b)), the entrainment of the brain clock by short light pulses is impaired but the clock is still entrainable by light-dark cycles, probably due to light input from the visual system. Whether cryptochrome and visual transduction pathways play a role in entrainment of noninnervated, directly photosensitive peripheral clocks is not known and the subject of this study. The authors monitored levels of the clock protein TIM in the lateral neurons (LNs) of larval brains and in the renal Malpighian tubules (MTs) of flies mutant for the cryptochrome gene (cry(b)) and in mutants that lack signaling from the visual photopigments (norpA(P41)). In cry(b) flies, light applied during the dark period failed to induce degradation of TIM both in MTs and in LNs, yet attenuated cycling of TIM was observed in both tissues in LD. This cycling was abolished in LNs, but persisted in MTs, of norpA(P41);cry(b) double mutants. Furthermore, the activity of the tim gene in the MTs of cry(b) flies, reported by luciferase, seemed stimulated by lights-on and suppressed by lights-off, suggesting that the absence of functional cryptochrome uncovered an additional light-sensitive pathway synchronizing the expression of TIM in this tissue. In constant darkness, cycling of TIM was abolished in MTs; however, it persisted in LNs of cry(b) flies. The authors conclude that cryptochrome is involved in TIM-mediated entrainment of both central LN and peripheral MT clocks. Cryptochrome is also an indispensable component of the endogenous clock mechanism in the examined peripheral tissue, but not in the brain. Thus, although neural and epithelial cells share the core clock mechanism, some clock components and light-entrainment pathways appear to have tissue-specific roles.  相似文献   

7.
Melatonin in humans can be an independent or dependent variable. Measurement of endogenous melatonin levels under dim-light conditions, particularly the dim-light melatonin onset (DLMO), has received increasing attention among researchers, and for clinicians it may soon become a convenient test that can be done at home using saliva collections in the evening, without interfering with sleep. Melatonin, even at low physiological doses, can cause advances (shifts to an earlier time) or delays (shifts to a later time) depending on when it is administered on its phase-response curve (in most sighted people, these times are approximately in the p.m. and in the a.m., respectively). Although both bright light and melatonin can be used separately or together in the treatment of circadian phase disorders in sighted people-such as advanced and delayed sleep phase syndromes, jet lag, shift-work maladaptation, and winter depression (seasonal affective disorder, or SAD)-melatonin is the treatment of choice in totally blind people. These people provide a unique opportunity to study the human circadian system without the overwhelming effects of ocularly mediated light, thus permitting us to establish that all blind free-runners (BFRs) studied under high resolution appear to have phase-advancing and phase-delaying responses to as yet unidentified zeitgebers (time givers) that are usually too weak to result in entrainment.  相似文献   

8.
Human interdigestive intestinal motility follows a circadian rhythm with reduced nocturnal activity, but circadian pancreatic exocrine secretion is unknown. To determine whether circadian changes in interdigestive pancreatic secretion occur and are associated with motor events, pancreatic enzyme outputs, proximal jejunal motility, and plasma pancreatic polypeptide concentrations were measured during consecutive daytime and nighttime periods (12 h each) in seven healthy volunteers using orojejunal multilumen intubation. Studies were randomly started in the morning or evening. Nocturnally, motility decreased (motor quiescence: 67 +/- 22 vs. 146 +/- 37 min; motility index: 3.59 +/- 0.33 vs. 2.78 +/- 0.40 mmHg/min; both P < 0.05) but amylase output increased (273 +/- 78 vs. 384 +/- 100 U/min; P < 0.05) and protease output remained unchanged (P > 0.05); consequently, enzyme/motility ratio increased. Amylase outputs were always lowest during phase I. Motor but not pancreatic circadian activities were associated with sleep. Pancreatic polypeptide plasma concentrations were unchanged. Consequently, intestinal motor and pancreatic exocrine functions may have different circadian rhythms, i.e., decreased motor and stable secretory activity during the night. However, the association between individual phases of interdigestive motor and secretory activity is preserved. The nocturnal increase in enzyme/motility ratio is probably not caused by increased cholinergic tone.  相似文献   

9.
Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.  相似文献   

10.
11.
The sleep electroencephalogram (EEG) is highly heritable in humans and yet little is known about the genetic basis of inter-individual differences in sleep architecture. The aim of this study was to identify associations between candidate circadian gene variants and the polysomnogram, recorded under highly controlled laboratory conditions during a baseline, overnight, 8 h sleep opportunity. A candidate gene approach was employed to analyze single-nucleotide polymorphisms from five circadian-related genes in a two-phase analysis of 84 healthy young adults (28 F; 23.21 ± 2.97 years) of European ancestry. A common variant in Period2 (PER2) was associated with 20 min less slow-wave sleep (SWS) in carriers of the minor allele than in noncarriers, representing a 22% reduction in SWS duration. Moreover, spectral analysis in a subset of participants (n = 37) showed the same PER2 polymorphism was associated with reduced EEG power density in the low delta range (0.25–1.0 Hz) during non-REM sleep and lower slow-wave activity (0.75–4.5 Hz) in the early part of the sleep episode. These results indicate the involvement of PER2 in the homeostatic process of sleep. Additionally, a rare variant in Melatonin Receptor 1B was associated with longer REM sleep latency, with minor allele carriers exhibiting an average of 65 min (87%) longer latency from sleep onset to REM sleep, compared to noncarriers. These findings suggest that circadian-related genes can modulate sleep architecture and the sleep EEG, including specific parameters previously implicated in the homeostatic regulation of sleep.  相似文献   

12.
13.
An emerging theme of studies with spontaneous, engineered and induced mutant mice is that phenotypes often depend on genetic background, implying that genetic modifiers have a role in guiding the functional consequences of genetic variation. Understanding the molecular and cellular basis by which modifier genes exert their influence will provide insights into developmental and physiological pathways that are critical to fundamental biological processes, as well as into novel targets for therapeutic interventions in human diseases.  相似文献   

14.
Circadian rhythm of irinotecan tolerability in mice   总被引:2,自引:0,他引:2  
The toxicity of irinotecan (CPT-11), a topoisomerase-I inhibitor largely used in cancer patients, was investigated as a function of the circadian time of its administration in mice, with mortality, body weight loss, leukopenia, neutropenia, intestinal lesions, and bone marrow cell cycle phase distribution as end points. Four experiments were performed on a total of 773 male mice standardized with 12h light/12h darkness. Irinotecan was administered daily for 4 or 10 consecutive days (D1-4 and D1-10, respectively, in different experiments) at one of six circadian stages expressed in hours after light onset (HALO). The survival curves differed significantly as a function of the dosage and circadian time of drug administration by the D1-10 schedule, with 70% survival at 7 or 11 HALO and 51% at 19 or 23 HALO (p=0.039 from log rank test). CPT-11 administration at 19 or 23 HALO resulted in (1) greatest mean body weight loss at nadir; (2) most severe colic and bone marrow lesions and/or slowest recovery; and (3) deepest neutropenia nadir and/or slowest hematologic recovery. These circadian treatment time-related differences were statistically validated. The bone marrow cell cycle data revealed a four to eight-fold larger G2-M phase arrest following irinotecan administration at 19 or 23 HALO in comparison to the other times of drug administration, apparently representative of the repair of more extensive DNA damage (p < 0.001 from ANOVA) when the medication was given at these circadian times. Overall, CPT-11 was better tolerated by mice treated during the light (animals' rest) span. The results support the administration of CPT-11 to cancer patients in the second half of the night, during sleep, in order to improve drug tolerability.  相似文献   

15.
We show that phototaxis in cryptophytes is likely mediated by a two-rhodopsin-based photosensory mechanism similar to that recently demonstrated in the green alga Chlamydomonas reinhardtii, and for the first time, to our knowledge, report spectroscopic and charge movement properties of cryptophyte algal rhodopsins. The marine cryptophyte Guillardia theta exhibits positive phototaxis with maximum sensitivity at 450 nm and a secondary band above 500 nm. Variability of the relative sensitivities at these wavelengths and light-dependent inhibition of phototaxis in both bands by hydroxylamine suggest the involvement of two rhodopsin photoreceptors. In the related freshwater cryptophyte Cryptomonas sp. two photoreceptor currents similar to those mediated by the two sensory rhodopsins in green algae were recorded. Two cDNA sequences from G. theta and one from Cryptomonas encoding proteins homologous to type 1 opsins were identified. The photochemical reaction cycle of one Escherichia-coli-expressed rhodopsin from G. theta (GtR1) involves K-, M-, and O-like intermediates with relatively slow (approximately 80 ms) turnover time. GtR1 shows lack of light-driven proton pumping activity in E. coli cells, although carboxylated residues are at the positions of the Schiff base proton acceptor and donor as in proton pumping rhodopsins. The absorption spectrum, corresponding to the long-wavelength band of phototaxis sensitivity, makes this pigment a candidate for one of the G. theta sensory rhodopsins. A second rhodopsin from G. theta (GtR2) and the one from Cryptomonas have noncarboxylated residues at the donor position as in known sensory rhodopsins.  相似文献   

16.
17.
It has been accepted for a hundred years or more that rods and cones are the only photoreceptive cells in the retina. The light signals generated in rods and cones, after processing by downstream retinal neurons (bipolar, horizontal, amacrine and ganglion cells), are transmitted to the brain via the axons of the ganglion cells for further analysis. In the past few years, however, convincing evidence has rapidly emerged indicating that a small subset of retinal ganglion cells in mammals is also intrinsically photosensitive. Melanopsin is the signaling photopigment in these cells. The main function of the inner-retina photoreceptors is to generate and transmit non-image-forming visual information, although some role in conventional vision (image detection) is also possible.  相似文献   

18.
Circadian rhythm for experimentally-induced aggressive behavior in mice   总被引:1,自引:0,他引:1  
  相似文献   

19.
Photoreception in the mammalian retina is not restricted to rods and cones but extends to a small number of intrinsically photoreceptive retinal ganglion cells (ipRGCs), expressing the photopigment melanopsin. ipRGCs are known to support various accessory visual functions including circadian photoentrainment and pupillary reflexes. However, despite anatomical and physiological evidence that they contribute to the thalamocortical visual projection, no aspect of visual discrimination has been shown to rely upon ipRGCs. Based on their currently known roles, we hypothesized that ipRGCs may contribute to distinguishing brightness. This percept is related to an object's luminance-a photometric measure of light intensity relevant for cone photoreceptors. However, the perceived brightness of different sources is not always predicted by their respective luminance. Here, we used parallel behavioral and electrophysiological experiments to first show that melanopsin contributes to brightness discrimination in both retinally degenerate and fully sighted mice. We continued to use comparable paradigms in psychophysical experiments to provide evidence for a similar role in healthy human subjects. These data represent the first direct evidence that an aspect of visual discrimination in normally sighted subjects can be supported by inner retinal photoreceptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号