首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estradiol (E(2)) exerts not only genotropic but also nongenomic actions through nuclear estrogen receptors (ER). Here, we provide a novel paradigm for nongenomic E(2) signaling independent of nuclear ER. E(2) induces a rapid rise in the intracellular free Ca(2+) concentration ([Ca(2+)](i)) through membrane estrogen receptors in murine RAW 264.7 macrophages. This E(2)-induced Ca(2+) signaling is not prevented by different ER blockers and cannot directly activate stably transfected c-fos promoter or the mitogen-activated protein kinases p38, ERK1/2, and SAPK/JNK, or NO production. However, the E(2)-induced rise in [Ca(2+)](i) specifically down-regulates the serum-stimulated activation of c-fos promoter and ERK1/2, and conversely, it specifically up-regulates lipopolysaccharide-stimulated activation of c-fos promoter, p38, and NO production. The E(2)-changed activation of c-fos promoter can be prevented by an intracellular Ca(2+) chelator. Our data indicate that E(2)-induced nongenomic Ca(2+) signaling through membrane ER is able to specifically modulate genotropic signaling pathways with impact on macrophage activation.  相似文献   

2.
3.
4.
5.
6.
During development, epigenetic programs are "installed" on the genome that direct differentiation and normal tissue and organ function in adulthood. Consequently, development is also a period of susceptibility to reprogramming of the epigenome. Developmental reprogramming occurs when an adverse stimulus or insult interrupts the proper "install" of epigenetic programs during development, reprogramming normal physiologic responses in such a way as to promote disease later in life. Some of the best examples of developmental reprogramming involve the reproductive tract, where early life exposures to environmental estrogens can increase susceptibility to benign and malignant tumors in adulthood including leiomyoma (fibroids), endometrial, and prostate cancer. Although specific mechanism(s) by which environmental estrogens reprogram the developing epigenome were unknown, both DNA and histone methylation were considered likely targets for epigenetic reprogramming. We have now identified a mechanism by which developmental exposures to environmental estrogens reprogram the epigenome by inducing inappropriate activation of nongenomic estrogen receptor (ER) signaling. Activation of nongenomic ER signaling via the phosphotidylinositol-3-kinase (PI3K) pathway activates the kinase AKT/PKB in the developing reproductive tract, which phosphorylates the histone lysine methyltransferase (HKMT) EZH2, the key "installer" of epigenetic histone H3 lysine 27 trimethylation (H3K27me3). AKT phosphorylation inactivates EZH2, decreasing levels of H3K27 methylation, a repressive mark that inhibits gene expression, in the developing uterus. As a result of this developmental reprogramming, many estrogen-responsive genes become hypersensitive to estrogen in adulthood, exhibiting elevated expression throughout the estrus cycle, and resulting in a "hyper-estrogenized" phenotype in the adult uterus that promotes development of hormone-dependent tumors.  相似文献   

7.
8.
9.
10.
11.
Sex steroids exert profound and controversial effects on cardiovascular function. For example, estrogens have been reported to either ameliorate or exacerbate coronary heart disease. Although estrogen dilates coronary arteries from a variety of species, the molecular basis for this acute, nongenomic effect is unclear. Moreover, we know very little of how estrogen affects human coronary artery smooth muscle cells (HCASMC). The purpose of this study was to elucidate nongenomic estrogen signal transduction in HCASMC. We have used tissue (arterial tension studies), cellular (single-channel patch clamp, fluorescence), and molecular (protein expression) techniques to now identify novel targets of estrogen action in HCASMC: type I (neuronal) nitric oxide synthase (nNOS) and phosphatidylinositol 3-kinase (PI3-kinase)Akt. 17beta-Estradiol (E(2)) increased NO-stimulated fluorescence in HCASMC, and cell-attached patch-clamp experiments revealed that stimulation of nNOS leads to increased activity of calcium-activated potassium (BK(Ca)) channels in these cells. Furthermore, overexpression of nNOS protein in HCASMC greatly enhanced BK(Ca) channel activity. Immunoblot studies demonstrated that E(2) enhances Akt phosphorylation in HCASMC and that wortmannin, an inhibitor of PI3-kinase, attenuated E(2)-stimulated channel activity, NO production, Akt phosphorylation, and estrogen-stimulated coronary relaxation. These studies implicate the PI3-kinase/Akt signaling axis as an estrogen transduction component in vascular smooth muscle cells. We conclude, therefore, that estrogen opens BK(Ca) channels in HCASMC by stimulating nNOS via a transduction sequence involving PI3-kinase and Akt. These findings now provide a molecular mechanism that can explain the clinical observation that estrogen enhances coronary blood flow in patients with diseased or damaged coronary arteries.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Estrogen actions are mediated by a complex interface of direct control of gene expression (the so-called "genomic action") and by regulation of cell signaling/phosphorylation cascades, referred to as the "nongenomic," or extranuclear, action. We have previously described the identification of MNAR (modulator of nongenomic action of estrogen receptor) as a novel scaffold protein that regulates estrogen receptor alpha (ERalpha) activation of cSrc. In this study, we have investigated the role of MNAR in 17beta-estradiol (E2)-induced activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Consistent with our previous results, a direct correlation was established between MNAR expression levels and E2-induced activation of PI3 and Akt kinases. Endogenous MNAR, ERalpha, cSrc, and p85, the regulatory subunit of PI3 kinase, interacted in MCF7 cells treated with E2. The interaction between p85 and MNAR required activation of cSrc and MNAR phosphorylation on Tyr 920. Consequently, the mutation of this tyrosine to alanine (Y920A) abrogated the interaction between MNAR and p85 and the E2-induced activation of the PI3K/Akt pathway, which was required for the E2-induced protection of MCF7 cells from apoptosis. Nonetheless, the Y920A mutant potentiated the E2-induced activation of the Src/MAPK pathway and MCF7 cell proliferation, as observed with the wild-type MNAR. These results provide new and important insights into the molecular mechanisms of E2-induced regulation of cell proliferation and apoptosis.  相似文献   

19.
Steroid hormones exert genotropic actions through members of the nuclear receptor family. Here, we have demonstrated genotropic actions of testosterone that are independent of intracellular androgen receptors (iAR). Through plasma membrane androgen receptors (mAR), testosterone induces a rapid rise in the intracellular free Ca(2+) concentration of iAR-free murine RAW 264.7 macrophages. This nongenomic testosterone signaling, which is independent of both iAR and estrogen receptors, does not in itself activate either the mitogen-activated protein kinase (MAPK) families ERK1/2, p38, and JNK/SAPK, the stably and transiently transfected c-fos promoter, or NO production. In the context of lipopolysaccharide (LPS) signaling, however, testosterone attenuates LPS activation of the c-fos promoter and NO production, which is abolished by the intracellular Ca(2+) chelator BAPTA. Testosterone also attenuates the LPS activation of p38 but not that of ERK1/2 and JNK/SAPK, and this attenuation is abrogated by BAPTA. Moreover, the p38 inhibitor, SB 203580, largely reduces LPS activation of the c-fos promoter and NO production, and the remaining levels are no longer regulated by testosterone. This study is the first to provide information on genotropic actions of mAR-mediated nongenomic testosterone Ca(2+) signaling by cross-talk with the LPS signaling pathway through p38 MAPK with impact on cell function.  相似文献   

20.
Extra-nuclear signaling of estrogen receptors   总被引:1,自引:0,他引:1  
Fu XD  Simoncini T 《IUBMB life》2008,60(8):502-510
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号