首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycerotoxin (GLTx) is capable of stimulating neurotransmitter release at the frog neuromuscular junction by directly interacting with N-type Ca2+ (Cav2.2) channels. Here we have utilized GLTx as a tool to investigate the functionality of Cav2.2 channels in various mammalian neuronal preparations. We first adapted a fluorescent-based high-throughput assay to monitor glutamate release from rat cortical synaptosomes. GLTx potently stimulates glutamate secretion and Ca2+ influx in synaptosomes with an EC50 of 50 pm. Both these effects were prevented using selective Cav2.2 channel blockers suggesting the functional involvement of Cav2.2 channels in mediating glutamate release in this system. We further show that both Cav2.1 (P/Q-type) and Cav2.2 channels contribute equally to depolarization-induced glutamate release. We then investigated the functionality of Cav2.2 channels at the neonatal rat neuromuscular junction. GLTx enhances both spontaneous and evoked neurotransmitter release causing a significant increase in the frequency of postsynaptic action potentials. These effects were blocked by specific Cav2.2 channel blockers demonstrating that either GLTx or its derivatives could be used to selectively enhance the neurotransmitter release from Cav2.2-expressing mammalian neurons.  相似文献   

2.
Voltage-gated calcium channels (VGCCs), calmodulin (CaM), and calmodulin kinase II (CaMKII) are essential for various nervous system functions. CaM and CaMKII differentially regulate calcium dependent facilitation (CDF) and calcium dependent inactivation (CDI) of the Cav1 and Cav2 families of VGCCs. It is generally accepted that conserved structures in the C-terminus of these channels regulate CDF and CDI, and yet recent evidence indicates that other intracellular regions may be involved. We recently discovered that N-terminal sequences in Cav1.2 bind CaM and CaMKII, and function to regulate CDI as well as surface expression and open probability, respectively. Cav1 and Cav2 share significant portions of N-terminal sequence and therefore we explored whether homologous binding sites might exist in Cav2.1. Here, we show that like the proximal N-terminus of Cav1.2, the homologous region of Cav2.1 contains sequences which interact either directly or indirectly with CaM.  相似文献   

3.
Zhen XG  Xie C  Yamada Y  Zhang Y  Doyle C  Yang J 《FEBS letters》2006,580(24):5733-5738
The activity of voltage-gated calcium channels (VGCCs) decreases with time in whole-cell and inside-out patch-clamp recordings. In this study we found that substituting a single amino acid (I1520) at the intracellular end of IIIS6 in the alpha(1) subunit of P/Q-type Ca(2+) channels with histidine or aspartate greatly attenuated channel rundown in inside-out patch-clamp recordings. The homologous mutations also slowed rundown of N- and L-type Ca(2+) channels, albeit to a lesser degree. In P/Q-type channels, the attenuation of rundown is accompanied by an increased apparent affinity for phosphatidylinositol-4,5-bisphosphate, which has been shown to be critical for maintaining Ca(2+) channel activity [L. Wu, C.S. Bauer, X.-G. Zhen, C. Xie, J. Yang, Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419 (2002) 947-952]. Furthermore, the histidine mutation significantly stabilized the open state, making the channels easier to open, slower to close, harder to inactivate and faster to recover from inactivation. Our finding that mutation of a single amino acid can greatly attenuate rundown provides an easy and efficient way to slow the rundown of VGCCs, facilitating functional studies that require direct access to the cytoplasmic side of the channel.  相似文献   

4.
Voltage-gated calcium channels (VGCCs), calmodulin (CaM), and calmodulin kinase II (CaMKII) are essential for various nervous system functions. CaM and CaMKII differentially regulate calcium dependent facilitation (CDF) and calcium dependent inactivation (CDI) of the Cav1 and Cav2 families of VGCCs. It is generally accepted that conserved structures in the C-terminus of these channels regulate CDF and CDI, and yet recent evidence indicates that other intracellular regions may be involved. We recently discovered that N-terminal sequences in Cav1.2 bind CaM and CaMKII, and function to regulate CDI as well as surface expression and open probability, respectively. Cav1 and Cav2 share significant portions of N-terminal sequence and therefore we explored whether homologous binding sites might exist in Cav2.1. Here, we show that like the proximal N-terminus of Cav1.2, the homologous region of Cav2.1 contains sequences which interact either directly or indirectly with CaM.  相似文献   

5.
A benzothiazole-derived compound (4a) designed to mimic the C(alpha)-C(beta) bond vectors and terminal functionalities of Lys2, Tyr13 and Arg17 in omega-conotoxin GVIA was synthesised, together with analogues (4b-d), which had each side-chain mimic systematically truncated or eliminated. The affinity of these compounds for rat brain N-type and P/Q-type voltage gated calcium channels (VGCCs) was determined. In terms of N-type channel affinity and selectivity, two of these compounds (4a and 4d) were found to be highly promising, first generation mimetics of omega-conotoxin. The fully functionalised mimetic (4a) showed low microM binding affinity to N-type VGCCs (IC(50)=1.9 microM) and greater than 20-fold selectivity for this channel sub-type over P/Q-type VGCCs, whereas the mimetic in which the guanidine-type side chain was truncated back to an amine (4d, IC(50)= 4.1 microM) showed a greater than 25-fold selectivity for the N-type channel.  相似文献   

6.
Inhibition of N- (Cav2.2) and P/Q-type (Cav2.1) calcium channels by G-proteins contribute importantly to presynaptic inhibition as well as to the effects of opiates and cannabinoids. Accordingly, elucidating the molecular mechanisms underlying G-protein inhibition of voltage-gated calcium channels has been a major research focus. So far, inhibition is thought to result from the interaction of multiple proposed sites with the Gbetagamma complex (Gbetagamma). Far less is known about the important interaction sites on Gbetagamma itself. Here, we developed a novel electrophysiological paradigm, "compound-state willing-reluctant analysis," to describe Gbetagamma interaction with N- and P/Q-type channels, and to provide a sensitive and efficient screen for changes in modulatory behavior over a broad range of potentials. The analysis confirmed that the apparent (un)binding kinetics of Gbetagamma with N-type are twofold slower than with P/Q-type at the voltage extremes, and emphasized that the kinetic discrepancy increases up to ten-fold in the mid-voltage range. To further investigate apparent differences in modulatory behavior, we screened both channels for the effects of single point alanine mutations within four regions of Gbeta1, at residues known to interact with Galpha. These residues might thereby be expected to interact with channel effectors. Of eight mutations studied, six affected G-protein modulation of both N- and P/Q-type channels to varying degrees, and one had no appreciable effect on either channel. The remaining mutation was remarkable for selective attenuation of effects on P/Q-, but not N-type channels. Surprisingly, this mutation decreased the (un)binding rates without affecting its overall affinity. The latter mutation suggests that the binding surface on Gbetagamma for N- and P/Q-type channels are different. Also, the manner in which this last mutation affected P/Q-type channels suggests that some residues may be important for "steering" or guiding the protein into the binding pocket, whereas others are important for simply binding to the channel.  相似文献   

7.
Nitric oxide (NO) is involved in a variety of physiological processes, such as vasoregulation and neurotransmission, and has a complex role in the regulation of pain transduction and synaptic transmission. We have shown previously that NO inhibits high voltage-activated Ca2+ channels in primary sensory neurons and excitatory synaptic transmission in the spinal dorsal horn. However, the molecular mechanism involved in this inhibitory action remains unclear. In this study, we investigated the role of S-nitrosylation in the NO regulation of high voltage-activated Ca2+ channels. The NO donor S-nitroso-N-acetyl-dl-penicillamine (SNAP) rapidly reduced N-type currents when Cav2.2 was coexpressed with the Cavβ1 or Cavβ3 subunits in HEK293 cells. In contrast, SNAP only slightly inhibited P/Q-type and L-type currents reconstituted with various Cavβ subunits. SNAP caused a depolarizing shift in voltage-dependent N-type channel activation, but it had no effect on Cav2.2 protein levels on the membrane surface. The inhibitory effect of SNAP on N-type currents was blocked by the sulfhydryl-specific modifying reagent methanethiosulfonate ethylammonium. Furthermore, the consensus motifs of S-nitrosylation were much more abundant in Cav2.2 than in Cav1.2 and Cav2.1. Site-directed mutagenesis studies showed that Cys-805, Cys-930, and Cys-1045 in the II-III intracellular loop, Cys-1835 and Cys-2145 in the C terminus of Cav2.2, and Cys-346 in the Cavβ3 subunit were nitrosylation sites mediating NO sensitivity of N-type channels. Our findings demonstrate that the consensus motifs of S-nitrosylation in cytoplasmically accessible sites are critically involved in post-translational regulation of N-type Ca2+ channels by NO. S-Nitrosylation mediates the feedback regulation of N-type channels by NO.  相似文献   

8.
The lack of a calcium channel agonist (e.g., BayK8644) for CaV2 channels has impeded their investigation. Roscovitine, a potent inhibitor of cyclin-dependent kinases 1, 2, and 5, has recently been reported to slow the deactivation of P/Q-type calcium channels (CaV2.1). We show that roscovitine also slows deactivation (EC(50) approximately 53 microM) of N-type calcium channels (CaV2.2) and investigate gating alterations induced by roscovitine. The onset of slowed deactivation was rapid ( approximately 2 s), which contrasts with a slower effect of roscovitine to inhibit N-current (EC(50) approximately 300 microM). Slow deactivation was specific to roscovitine, since it could not be induced by a closely related cyclin-dependent kinase inhibitor, olomoucine (300 microM). Intracellularly applied roscovitine failed to slow deactivation, which implies an extracellular binding site. The roscovitine-induced slow deactivation was accompanied by a slight left shift in the activation-voltage relationship, slower activation at negative potentials, and increased inactivation. Additional data showed that roscovitine preferentially binds to the open channel to slow deactivation. A model where roscovitine reduced a backward rate constant between two open states was able to reproduce the effect of roscovitine on both activation and deactivation.  相似文献   

9.
The unconventional gaseous transmitter nitric oxide (NO) markedly influences most of mechanisms involved in the regulation of intracellular Ca2+ homeostasis. In excitable cells, Ca2+ signaling mainly depends on the activity of voltage-gated Ca2+ channels (VGCCs). In the present paper, we will review data from our laboratory and others characterizing NO-induced modulation of Ca(v)1 (L-type) and Ca(v)2.2 (N-type) channels. In particular, we will explore experimental evidence indicating that NO's inhibition of channel gating is produced via cGMP-dependent protein kinase and examine some of the numerous cell functions that are potentially influenced by the action of NO on Ca2+ channels.  相似文献   

10.
Here we report the first assessment of the expression and modulation of an invertebrate alpha1 subunit homolog of mammalian presynaptic Cav2 calcium channels (N-type and P/Q-type) in mammalian cells. Our data show that molluscan channel (LCav2a) isolated from Lymnaea stagnalis is effectively membrane-targeted and electrophysiologically recordable in tsA-201 cells only when the first 44 amino acids of LCav2a are substituted for the corresponding region of rat Cav2.1. When coexpressed with rat accessory subunits, the biophysical properties of LCav2a-5'rbA resemble those of mammalian N-type calcium channels with respect to activation and inactivation, lack of pronounced calcium dependent inactivation, preferential permeation of barium ions, and cadmium block. Consistent with reports of native Lymnaea calcium currents, the LCav2a-5'rbA channel is insensitive to micromolar concentrations of omega-conotoxin GVIA and is not affected by nifedipine, thus confirming that it is not of the L-type. Interestingly, the LCav2a-5'rbA channel is almost completely and irreversibly inhibited by guanosine 5'-3-O-(thio)triphosphate but not regulated by syntaxin1, suggesting that invertebrate presynaptic calcium channels are differently modulated from their vertebrate counterparts.  相似文献   

11.
Unified mechanisms of Ca2+ regulation across the Ca2+ channel family   总被引:3,自引:0,他引:3  
L-type (CaV1.2) and P/Q-type (CaV2.1) calcium channels possess lobe-specific CaM regulation, where Ca2+ binding to one or the other lobe of CaM triggers regulation, even with inverted polarity of modulation between channels. Other major members of the CaV1-2 channel family, R-type (CaV2.3) and N-type (CaV2.2), have appeared to lack such CaM regulation. We report here that R- and N-type channels undergo Ca(2+)-dependent inactivation, which is mediated by the CaM N-terminal lobe and present only with mild Ca2+ buffering (0.5 mM EGTA) characteristic of many neurons. These features, together with the CaM regulatory profiles of L- and P/Q-type channels, are consistent with a simplifying principle for CaM signal detection in CaV1-2 channels-independent of channel context, the N- and C-terminal lobes of CaM appear invariably specialized for decoding local versus global Ca2+ activity, respectively.  相似文献   

12.
Trans-2-Pentenal (pentenal), an α,β-unsaturated aldehyde, induces increases in [Ca2+]i in cultured neonatal rat trigeminal ganglion (TG) neurons. Since all pentenal-sensitive neurons responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC) and neurons from TRPA1 knockouts failed to respond to pentenal, TRPA1 appears to be sole initial transduction site for pentenal-evoked trigeminal response, as reported for the structurally related irritant, acrolein. Furthermore, because the neuronal sensitivity to pentenal is strictly dependent upon the presence of extracellular Na+/Ca2+, as we showed previously, we investigated which types of voltage-gated sodium/calcium channels (VGSCs/VGCCs) are involved in pentenal-induced [Ca2+]i increases as a downstream mechanisms. The application of tetrodotoxin (TTX) significantly suppressed the pentenal-induced increase in [Ca2+]i in a portion of TG neurons, suggesting that TTX-sensitive (TTXs) VGSCs contribute to the pentenal response in those neurons. Diltiazem and ω-agatoxin IVA, antagonists of L- and P/Q-type VGCCs, respectively, both caused significant reductions of the pentenal-induced responses. ω-Conotoxin GVIA, on the other hand, caused only a small decrease in the size of pentenal-induced [Ca2+]i rise. These indicate that both L- and P/Q-type VGCCs are involved in the increase in [Ca2+]i produced by pentenal, while N-type calcium channels play only a minor role. This study demonstrates that TTXs VGSCs, L- and P/Q-type VGCCs play a significant role in the pentenal-induced trigeminal neuronal responses as downstream mechanisms following TRPA1 activation.  相似文献   

13.
There are many different calcium channels expressed in the mammalian nervous system, but N-type and P/Q-type calcium channels appear to dominate the presynaptic terminals of central and peripheral neurons. The neurotransmitter-induced modulation of these channels can result in alteration of synaptic transmission. This review highlights the mechanisms by which neurotransmitters affect the activity of N-type and P/Q-type calcium channels. The inhibition of these channels by voltage-dependent and voltage-independent mechanisms is emphasized because of the wealth of information available on the intracellular mediators and on the effect of these pathways on the single-channel gating.  相似文献   

14.
The direct inhibition of N- and P/Q-type calcium channels by G protein betagamma subunits is considered a key mechanism for regulating presynaptic calcium levels. We have recently reported that a number of features associated with this G protein inhibition are dependent on the G protein beta subunit isoform (Arnot, M. I., Stotz, S. C., Jarvis, S. E., Zamponi, G. W. (2000) J. Physiol. (Lond.) 527, 203-212; Cooper, C. B., Arnot, M. I., Feng, Z.-P., Jarvis, S. E., Hamid, J., Zamponi, G. W. (2000) J. Biol. Chem. 275, 40777-40781). Here, we have examined the abilities of different types of ancillary calcium channel beta subunits to modulate the inhibition of alpha(1B) N-type calcium channels by the five known different Gbeta subunit subtypes. Our data reveal that the degree of inhibition by a particular Gbeta subunit is strongly dependent on the specific calcium channel beta subunit, with N-type channels containing the beta(4) subunit being less susceptible to Gbetagamma-induced inhibition. The calcium channel beta(2a) subunit uniquely slows the kinetics of recovery from G protein inhibition, in addition to mediating a dramatic enhancement of the G protein-induced kinetic slowing. For Gbeta(3)-mediated inhibition, the latter effect is reduced following site-directed mutagenesis of two palmitoylation sites in the beta(2a) N-terminal region, suggesting that the unique membrane tethering of this subunit serves to modulate G protein inhibition of N-type calcium channels. Taken together, our data suggest that the nature of the calcium channel beta subunit present is an important determinant of G protein inhibition of N-type channels, thereby providing a possible mechanism by which the cellular/subcellular expression pattern of the four calcium channel beta subunits may regulate the G protein sensitivity of N-type channels expressed at different loci throughout the brain and possibly within a neuron.  相似文献   

15.
We reported recently a new mechanism by which the neuronal N-type Ca2+ (CaV2.2) channel expression may be regulated by ubiquitination. This mechanism involves the interaction between the channel and the light chain (LC1) of the microtubule associated protein B (MAP1B). We also showed that MAP1B-LC1 could interact with the ubiquitin-conjugating E2 enzyme UBE2L3 and that the ubiquitination/degradation mechanism triggered by MAP1B-LC1 could be prevented by inhibiting the ubiquitin-proteasome proteolytic pathway. We now report that MAP1B-LC1 can interact with the 2 main variants of the CaV2.2 channels (CaV2.2e37a and CaV2.2e37b) and that the MAP1B-LC1-mediated regulation most likely involves an internalization of the channels via a dynamin and clathrin-dependent pathway. In addition, here we propose that this novel mechanism of CaV channel regulation might be conserved among N-type and P/Q-type channels.  相似文献   

16.
We reported recently a new mechanism by which the neuronal N-type Ca2+ (CaV2.2) channel expression may be regulated by ubiquitination. This mechanism involves the interaction between the channel and the light chain (LC1) of the microtubule associated protein B (MAP1B). We also showed that MAP1B-LC1 could interact with the ubiquitin-conjugating E2 enzyme UBE2L3 and that the ubiquitination/degradation mechanism triggered by MAP1B-LC1 could be prevented by inhibiting the ubiquitin-proteasome proteolytic pathway. We now report that MAP1B-LC1 can interact with the 2 main variants of the CaV2.2 channels (CaV2.2e37a and CaV2.2e37b) and that the MAP1B-LC1-mediated regulation most likely involves an internalization of the channels via a dynamin and clathrin-dependent pathway. In addition, here we propose that this novel mechanism of CaV channel regulation might be conserved among N-type and P/Q-type channels.  相似文献   

17.
Activation of opioid or opioid-receptor-like (ORL1 a.k.a. NOP or orphanin FQ) receptors mediates analgesia through inhibition of N-type calcium channels in dorsal root ganglion (DRG) neurons (1, 2). Unlike the three types of classical mu, delta, and kappa opioid receptors, ORL1 mediates an agonist-independent inhibition of N-type calcium channels. This is mediated via the formation of a physical protein complex between the receptor and the channel, which in turn allows the channel to effectively sense a low level of constitutive receptor activity (3). Further inhibition of N-type channel activity by activation of other G protein-coupled receptors is thus precluded. ORL1 receptors, however, also undergo agonist-induced internalization into lysosomes, and channels thereby become cointernalized in a complex with ORL1. This then results in removal of N-type channels from the plasma membrane and reduced calcium entry (4). Similar signaling complexes between N-type channels and GABA(B) receptors have been reported (5). Moreover, both L-type and P/Q-type channels appear to be able to associate with certain types of G protein-coupled receptors (6, 7). Hence, interactions between receptors and voltage-gated calcium channels may be a widely applicable means to optimize receptor channel coupling.  相似文献   

18.
Sasaki T  Kobayashi K  Kohno T  Sato K 《FEBS letters》2000,466(1):125-129
Omega-conotoxin MVIIC (MVIIC) blocks P/Q-type calcium channels with high affinity and N-type calcium channels with low affinity, while the highly homologous omega-conotoxin MVIIA blocks only N-type calcium channels. We wished to obtain MVIIC analogues more selective for P/Q-type calcium channels than MVIIC to elucidate structural differences among the channels, which discriminate the omega-conotoxins. To prepare a number of MVIIC analogues efficiently, we developed a combinatorial method which includes a random air oxidation step. Forty-seven analogues were prepared in six runs and some of them exhibited higher selectivity for P/Q-type calcium channels than MVIIC in binding assays.  相似文献   

19.
Antibodies that recognize the alpha 2 delta and alpha 1 subunits of skeletal muscle L-type calcium channels have been used to investigate the subunit components and phosphorylation of omega-conotoxin (omega-CgTx)-sensitive N-type calcium channels from rabbit brain. Photolabeling of the N-type channel with a photoreactive derivative of 125I-omega-CgTx results in the identification of a single polypeptide of 240 kDa. MANC-1, a monoclonal antibody recognizing alpha 2 delta subunits of L-type calcium channels from skeletal muscle, immunoprecipitates the omega-CgTx-labeled 240-kDa polypeptide and approximately 6% of the digitonin-solubilized 125I-omega-CgTx-labeled N-type channels. MANC-1 also immunoprecipitates a phosphoprotein of 240 kDa that comigrates with 125I-omega-CgTx-labeled N-type calcium channels, but not with L-type calcium channels, in sucrose gradients. Both cAMP-dependent protein kinase and protein kinase C are effective in the phosphorylation of this polypeptide. Similar to the alpha 1 subunits of skeletal muscle L-type calcium channels, the immunoprecipitation of the 240-kDa phosphoprotein by MANC-1 is prevented by the detergent Triton X-100. Anti-CP-(1382-1400), an antipeptide antibody against a highly conserved segment of the alpha 1 subunits of calcium channels, immunoprecipitates the 240-kDa phosphopeptide in Triton X-100. The 240-kDa protein is phosphorylated to a stoichiometry of approximately 1 mol of phosphate/mol of omega-CgTx-binding N-type calcium channels by both cAMP-dependent protein kinase and protein kinase C. Our results show that the 240-kDa polypeptide is an alpha 1-like subunit of an omega-CgTx-sensitive N-type calcium channel. The N-type calcium channels containing this subunit are phosphorylated by cAMP-dependent protein kinase and protein kinase C and contain noncovalently associated alpha 1-like and alpha 2 delta-like subunits as part of their oligomeric structure.  相似文献   

20.
Activation of opioid or opioid-receptor-like (ORL1 a.k.a. NOP or orphanin FQ) receptors mediates analgesia through inhibition of N-type calcium channels in dorsal root ganglion (DRG) neurons (). Unlike the three types of classical μ, δ, and κ opioid receptors, ORL1 mediates an agonist-independent inhibition of N-type calcium channels. This is mediated via the formation of a physical protein complex between the receptor and the channel, which in turn allows the channel to effectively sense a low level of constitutive receptor activity (). Further inhibition of N-type channel activity by activation of other G protein-coupled receptors is thus precluded. ORL1 receptors, however, also undergo agonist-induced internalization into lysosomes, and channels thereby become cointernalized in a complex with ORL1. This then results in removal of N-type channels from the plasma membrane and reduced calcium entry (). Similar signaling complexes between N-type channels and GABAB receptors have been reported (). Moreover, both L-type and P/Q-type channels appear to be able to associate with certain types of G protein-coupled receptors (). Hence, interactions between receptors and voltage-gated calcium channels may be a widely applicable means to optimize receptor channel coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号