首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Australian scientist Frank Macfarlane Burnet-winner of the Nobel Prize in 1960 for his contributions to the understanding of immunological tolerance-is perhaps best recognized as one of the formulators of the clonal selection theory of antibody production, widely regarded as the 'central dogma' of modern immunology. His work in studies in animal virology, particularly the influenza virus, and rickettsial diseases is also well known. Somewhat less known and publicized is Burnet's research on bacteriophages, which he conducted in the first decade of his research career, immediately after completing medical school. For his part, Burnet made valuable contributions to the understanding of the nature of bacteriophages, a matter of considerable debate at the time he began his work. Reciprocally, it was while working on the phages that Burnet developed the scientific styles, the habits of mind and laboratory techniques and practices that characterized him for the rest of his career. Using evidence from Burnet's published work, as well as personal papers from the period he worked on the phages, this paper demonstrates the direct impact that his experiments with phages had on the development of his characteristic scientific style and approaches, which manifested themselves in his later career and theories, and especially in his thinking regarding various immunological problems.  相似文献   

2.
Ernst Mayr's scientific career continues strongly 70 years after he published his first scientific paper in 1923. He is primarily a naturalist and ornithologist which has influenced his basic approach in science and later in philosophy and history of science. Mayr studied at the Natural History Museum in Berlin with Professor E. Stresemann, a leader in the most progressive school of avian systematics of the time. The contracts gained through Stresemann were central to Mayr's participation in a three year expedition to New Guinea and The Solomons, and the offer of a position in the Department of Ornithology, American Museum of Natural History, beginning in 1931. At the AMNH, Mayr was able to blend the best of the academic traditions of Europe with those of North America in developing a unified research program in biodiversity embracing systematics, biogeography and nomenclature. His tasks at the AMNH were to curate and study the huge collections amassed by the Whitney South Sea Expedition plus the just purchased Rothschild collection of birds. These studies provided Mayr with the empirical foundation essential for his 1942Systematics and the Origin of Species and his subsequent theoretical work in evolutionary biology as well as all his later work in the philosophy and history of science. Without a detailed understanding of Mayr's empirical systematic and biogeographic work, one cannot possibly comprehend fully his immense contributions to evolutionary biology and his later analyses in the philosophy and history of science.  相似文献   

3.
Dixon B 《Immunogenetics》2008,60(2):77-82
René Josephus Maria Stet pursued a 35-year-long scientific career contributing to human immunology, shrimp immunity and teleost immunity. His most significant contributions, however, were to the field of teleost major histocompatibility (MH) gene research from 1988 to 2007, a field in which he was a leader and an innovator. This review will discuss his work on these genes, highlighting the impact he had in three temporally overlapping phases of his career that can be characterized as MH gene discovery, MH gene function and evolution and population dynamics of teleost MH genes.  相似文献   

4.
William Montague Cobb's life and work reflect a profound integration of art, literature, social activism, and science. This article presents some of the highlights of his academic development and professional contributions. We have considered his early academic development within the contexts of the formative years of American physical anthropology, Howard University Medical School, and the social issues in American society that influenced Cobb. His approaches to teaching, anatomical and anthropological research, and medicine are unique, and yet are closely reasoned and creative reflections of the major currents of academe and the broader society with which he dealt. Imbued with a sense of social responsibility, Cobb's applied anthropology involved the accumulation of extensive data on the one hand, and the formation of organizations for social activism on the other. It was directed toward solving problems of health care and racism. His work thereby served to balance the widespread distortion and neglect of medical and racial problems facing A fro-America between 1930 and the present day. He was also a principal builder of black medical and scientific institutions, and he preserved the record of his coworkers' contributions through his many biographies. This work represents no more than a sketch of his rich and prolific career (during which he produced more than 1,100 publications); the emphasis of this biographical study has been to ascertain the circumstances and attitudes that helped mold the first Afro-American Ph.D. in physical anthropology.  相似文献   

5.
The paper reviews the life of Paul Ehrlich and his biomedical accomplishments in immunology, cancer research, and chemotherapy. Ehrlich achieved renown as an organic chemist, histologist, hematologist, immunologist, and pharmacologist. He disliked the formality of school but managed to excel in Latin and mathematics. His role model was an older cousin, Carl Welgert, who became a lifelong friend. Ehrlich studied medicine at Breslau, Strasbourg, Freiburg, and Leipzig, coming under the influence of Wilhelm Waldeyer, Julius Cohnheim, Rudolf Heidenhein, and Ferdinand Cohn. As a medical student, Ehrlich was captivated by structural organic chemistry and dyes. When he was 23, his first paper was published on selective staining. His doctoral thesis, “Contribution to the Theory and Practice of Histological Staining” contained most of the germinal ideas that would guide his future career. Most of his early work was centered in Berlin at Charité Hospital, where he did pioneering studies on blood and intravital staining, and at Robert Koch's Institute for Infectious Diseases, where he undertook important investigations in Immunology. Ehrlich became an authority on antitoxin standardization and developed the “side-chain theory” of antibody formation for which he was later awarded the Nobel Prize. He became director of an Institute for Experimental Therapy in Frankfurt where he continued research in immunology and carried out routine serum testing. He developed new lines of investigation in cancer research and originated the field of chemotherapy. Using principles developed in his early work with dyes, he successfully treated certain experimental trypanosomal infections with azo dyes. His crowning accomplishment was discovering that the compound Salvarsan could control human syphilis. Ehrlich's legacy in immunology and chemotherapy is discussed and an intimate portrait is drawn of Ehrlich the person.  相似文献   

6.
In this autobiographical sketch, the author discusses the development of his interest in the biological sciences, crediting his father, his first employer, his high school science teacher, and his college pharmacognosy professor with initially shaping his career. His early work on ergot alkaloid biosynthesis and subsequently, together with students and colleagues, on the toxic constituents of basidiomycetes is detailed. This is followed by comments on his developing interest in the therapeutic utility of herbs and phytomedicinals. A concern with the beneficial use of such products stemmed largely from observations made during sabbatical leaves and frequent travel in Germany. The importance of such botanicals (not currently recognized as drugs in the United States) in our developing health-care system is emphasized. The author concludes his comments by thanking his wife, his teachers, his students, and his many colleagues and friends for their unstinting assistance and support during his entire career.  相似文献   

7.
Georgy Gause (1910–1986) is best known for his contribution to ecology and evolutionary theory. His book “The Struggle for Existence” (1934) inspired generations of ecologists. Yet his scientific interests were diverse, embracing many aspects of the life sciences and medicine. The most notable shift in his research took place in the early 1940s when he began to study antibiotics and discovered Gramicidin S. Superficially, this shift looked like an attempt to switch from purely theoretical to applied research during the years of World War II, but Gause’s decision may also have been seriously affected by the “Great Purge” and the growth of Lysenkoism. Personal factors played a significant role in his career too. In this article, we propose four factors which drove Gause to switch his focus from ecology to antibiotics: the inner logic of his scientific research, Stalin’s science policy and the growth of Lysenkoism, the sociopolitical influence of World War II, and personal relationships. We will also show how all these factors are interdependent to some extent.  相似文献   

8.
Hubel D  Wiesel T 《Neuron》2012,75(2):182-184
While attending medical school at McGill, David Hubel developed an interest in the nervous system during the summers he spent at the Montreal Neurological Institute. After heading to the United States in 1954 for a Neurology year at Johns Hopkins, he was drafted by the army and was assigned to the Neuropsychiatry Division at the Walter Reed Hospital, where he began his career in research and did his first recordings from the visual cortex of sleeping and awake cats. In 1958, he moved to the lab of Stephen Kuffler at Johns Hopkins, where he began a long and fruitful collaboration with Torsten Wiesel. Born in Sweden, Torsten Wiesel began his scientific career at the Karolinska Institute, where he received his medical degree in 1954. After spending a year in Carl Gustaf Bernhard's laboratory doing basic neurophysiological research, he moved to the United States to be a postdoctoral fellow with Stephen Kuffler. It was at Johns Hopkins where he met David Hubel in 1958, and they began working together on exploring the receptive field properties of neurons in the visual cortex. Their collaboration continued until the late seventies. Hubel and Wiesel's work provided fundamental insight into information processing in the visual system and laid the foundation for the field of visual neuroscience. They have had many achievements, including--but not limited to--the discovery of orientation selectivity in visual cortex neurons and the characterization of the columnar organization of visual cortex through their discovery of orientation columns and ocular-dominance columns. Their work earned them the Nobel Prize for Physiology or Medicine in 1981, which they shared with Roger Sperry.  相似文献   

9.
The groundbreaking research carried out by Philip R. White in the 1930s and 1940s played a critical early role in the development of modern plant biotechnology and the production of biotech crops. He gained instant fame and became a historical figure early in his career by becoming the first person to attain unlimited growth of cultured plant tissues. White was one of the best known and most influential figures of his generation in plant cell culture research. His tireless and lifelong efforts to promote the use of plant cell culture systems inspired a generation of scientists and stimulated much scientific activity. White was not only a brilliant and visionary scientist but also a highly principled man who spoke courageously about the great moral and political issues of his day. He was admired as much for his science as for his humanity. His belief that plant cell culture research was not well represented at national and international meetings, and his deeply held conviction that science had to be international and without borders in order to be of service to humankind led to the founding of the International Association for Plant Biotechnology in 1963, currently the largest forum for the international plant biotechnology community. This tribute honors and celebrates Philip R. White for his inspiring science, for his kind and generous mentoring of young scientists, for his advocacy of plant cell culture research and its applications, for his promotion of international scientific exchange and cooperation, and for his leadership in the founding of the International Association for Plant Biotechnology.  相似文献   

10.
During his long career as a principal investigator and educator, Eli Sercarz trained over 100 scientists. He is best known for developing hen egg white lysozyme (HEL) as a model antigen for immunologic studies. Working in his model system Eli furthered our understanding of antigen processing and immunologic tolerance. His work established important concepts of how the immune system recognizes antigenic determinants processed from whole protein antigens; specifically he developed the concepts of immunodominance and crypticity. Later in his career he focused more on autoimmunity using a variety of established animal models to develop theories on how T cells can circumvent tolerance induction and how an autoreactive immune response can evolve over time. His theory of "determinant spreading" is one of the cornerstones of our modern understanding of autoimmunity. This review covers Eli's entire scientific career outlining his many seminal discoveries.  相似文献   

11.
Julian Huxley’s (1887–1975) contribution to twentieth-century biology and science popularisation is well documented. What has not been appreciated so far is that despite Huxley’s eminence as a public scientific figure and the part that he played in the rise of experimental zoology in Britain in the 1920s, his own research was often heavily criticised in this period by his colleagues. This resulted in numerous difficulties in getting his scientific research published in the early 1920s. At this time, Huxley started his popular science career. Huxley’s friends criticised him for engaging in this actively and attributed the publication difficulties to the time that he allocated to popular science. The cause might also have its roots in his self-professed inability to delve deeply into the particularities of research. This affected Huxley’s standing in the scientific community and seems to have contributed to the fact that Huxley failed twice in the late 1920s to be elected to the Royal Society. This picture undermines to some extent Peter J. Bowler’s recent portrayal of Huxley as a science populariser.  相似文献   

12.
13.
Editorial     
《The New phytologist》1998,140(2):171-171
New Phytologist welcomes this month, and introduces, its new Managing Editor, Jonathan Ingram. He comes to New Phytologist from Elsevier Science's Trends in Plant Science , where he has worked as Assistant Editor since the highly successful launch of that magazine in January 1996.
Jonathan's introduction to plant science, at Oxford over 10 years ago, was through the excellent tuition of Vernon Butt in a traditional botany degree. He then took a DPhil with Andrew Smith and Chris Leaver, learning biochemical and molecular research methods while studying malate decarboxylation associated with Crassulacean acid metabolism. He subsequently moved to the Max Planck Institute for Breeding Research in Cologne, Germany, where he did research with Dorothea Bartels into the molecular mechanism of drought tolerance in the resurrection plant Craterostigma plantagineum , specifically the role of sucrose-phosphate synthase.
These are challenging times in science publishing, particularly as technological advances force rapid change, but there are also many exciting new opportunities. Jonathan's experience and background will help New Phytologist remain in the vanguard of plant journals, while maintaining its traditions of scientific excellence and friendly service to authors and readers, traditions carefully nurtured by his predecessor David Stribley.
We wish David improved health and a happy retirement.  相似文献   

14.
Bibliometric studies have found that male researchers have their greatest productivity around the age of 40, that female researchers produce less than their male colleagues, that incentives for collaboration are slow to affect productivity and that, just like humans, research institutes become larger, less productive, more expensive to maintain and less able to raise money as they grow old. Almost invariably, these conclusions come from statistical studies of large numbers of European and American scientists, and there are practically no studies about tropical researchers. We present an in-depth analysis of the productivity of an internationally recognized tropical botanist and conservationist, Luis Diego Gómez Pignataro, based on the totality of his published work and on our own knowledge, as co-workers and friends, of the life frame in which that scientific output was produced. His life output departs from the expected pattern in that he had the highest productivity before reaching the expected peak productivity age, and that when he reached it his productivity fell and never recovered. Furthermore, marriage did not produce the expected fall in productivity. A close analysis of his life indicates that in the middle of his career he switched to intense teaching and conservation activities, and this better explains why his output of scientific research articles was low afterwards. This switch may occur in other tropical scientists.  相似文献   

15.
Charles F. Yocum has been a leader in the applications of biochemical techniques to the resolution and reconstitution of Photosystem II. His formal science education began as an undergraduate in biochemistry at Iowa State University and continued with graduate work in photosynthesis, first at the Illinois Institute of Technology and later at Indiana University. Following postdoctoral work at Cornell University, he joined the faculty of the University of Michigan where he has remained throughout his academic career. Charlie's contributions to a biochemical understanding of photosynthesis, particularly Photosystem II have been considerable, but most notably include his initial isolation of the first highly active oxygen-evolving particle from higher plant chloroplasts, the well-known and widely utilized `BBY particles'. In the aftermath of that isolation, Charlie's research further resolved these particles into ever finer and simpler, but active, Photosystem II complexes. In addition, Charlie's research has provided significant insight into the roles of both Cl and Ca2+ as required cofactors in photosynthetic oxygen evolution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Edouard Chatton (1883–1947) began his scientific career in the Pasteur Institute, where he made several important discoveries regarding pathogenic protists (trypanosomids, Plasmodium, toxoplasms, Leishmania). In 1908 he married a "Banyulencque", Marie Herre; from 1920, he focused his research on marine protists. He finished his career as Professor at the Sorbonne (Paris) and director of the Laboratoire Arago in Banyuls-sur-mer, where he died in 1947. André Lwoff (1902–1994) lived several scientific lives in addition to his artistic and family life. But it is the study of protists that filled his first life after he encountered the exceptional Master who was Chatton. Lwoff's father was a psychiatrist and his mother an artist sculptor. He became a Doctor of Medicine in 1927 and then a Doctor of Sciences in 1932, his thesis dealing with biochemical aspects of protozoa nutrition. He met Chatton in 1921 and – until Chatton's death – their meetings, first in Roscoff and then in Banyuls-sur-mer, were numerous and their collaboration very close. Their monograph on apostome ciliates was one of the peaks of this collaboration. In 1938, Lwoff was made director of the Microbial Physiology Department at the Pasteur Institute in Paris, where he began a new life devoted to bacteria, and then to viruses, before pursuing his career as director of the Cancer Research Institute in Villejuif (France). Lwoff was awarded the Nobel Prize in Physiology or Medicine in 1965. He died in Banyuls in 1994. "Master" and "pupil" had in common perseverance in their scientific work, conception and observation, a critical sense and rigor but also a great artistic sensibility that painting and drawing in the exceptional surroundings of Banyuls-sur-mer had fulfilled. Electronic Publication  相似文献   

17.
Prof. Dr. Pieter Hendrik (Piet) Nienhuis worked for almost 40 years in all aspects of aquatic ecology and environmental science and retired on 31 October 2003. He can be characterised as a distinguished scientist, shaped in an applied estuarine and aquatic research ambience of the former Delta Institute for Hydrobiological Research (DIHO) in Yerseke in the Netherlands. His appointment as a full professor at the Radboud University Nijmegen offered him a challenging step from monodisciplinarity in ecology, via multidisciplinarity in the application of ecological knowledge in river science to interdisciplinarity in environmental science and management. This paper describes his education, teaching activities, research, scientific publications, science management, and significance for various scientific disciplines. He made important contributions to biosystematics of angiosperms and algae, the ecology of seagrasses, nutrient cycling and eutrophication in estuarine ecosystems, and the integrated modelling of the ecological functioning of estuaries. Subsequently, he paid much attention to environmental problems in river basins, ecological rehabilitation and sustainable development. His work influenced the view of ecologists, aquatic scientists and water managers in the Netherlands as well as abroad, in particular regarding the drawbacks of compartmentalization of the estuaries and the importance of connectivity and morphodynamics in river systems. In hindsight, it appears as a logical line that he gradually moved from estuarine ecological research that became increasingly driven by societal and environmental problems to the field of environmental science and management.  相似文献   

18.
Lorenz Hiltner is recognized as the first scientist to coin the term “rhizosphere” in 1904. His scientific career and achievements are summarized in this essay. Most of his research he performed in the Bavarian Agriculture–Botanical Institute (later named the “Bavarian Institute of Plant Growth and Plant Protection”) in Munich, where he was the director from 1902 to 1923. Beginning with intensive and thorough investigations on the germination and growth of different crop plants (legumes and non-legumes) Hiltner became convinced, that root exudates of different plants support the development of different bacterial communities. His definition of the “rhizosphere” in the year 1904 centered on the idea, that plant nutrition is considerably influenced by the microbial composition of the rhizosphere. Hiltner observed bacterial cells even inside the rhizodermis of healthy roots. In analogy with fungal root symbionts, Hiltner named the bacterial community that is closely associated with roots “bacteriorhiza.” In his rhizosphere concept, Hiltner also envisioned, that beneficial bacteria are not only attracted by the root exudates but that there are also “uninvited guests,” that adjust to the specific root exudates. Based on his observations he hypothesized that “the resistance of plants towards pathogenesis is dependent on the composition of the rhizosphere microflora.” He even had the idea, that the quality of plant products may be dependent on the composition of the root microflora. In addition to his scientific achievements, Hiltner was very dedicated to applied work. Together with F. Nobbe he had the first patent on Rhizobium inoculants (Nitragin). He continuously improved formulations and the effectivity of the Rhizobium preparations and he also initiated seed dressing with sublimate for plant protection of seedlings. Thus, Hiltner tightly linked breakthroughs in basic research to improved rhizosphere management practices. In addition, he wrote a pioneering monograph on plant protection for everybody’s practical use. His emphasis on understanding microbes in the context of their micro-habitat, the rhizosphere, made him a pioneer in microbial ecology. Even now, in the era of genome and postgenome analysis with our better understanding of plant nutrition and soil bacteriology, his ideas and contributions are as fresh as they were more than 100 years ago.  相似文献   

19.
Alfred Russel Wallace The British naturalist Alfred Russel Wallace (1823–1913), well known as co‐discoverer of the “Darwinian” principle of natural selection, came from an ordinary background. Wallace left school aged 14 and never attended University. He became a land surveyor and studied, in his spare time, the works of the most famous naturalists of his age. After extensive expeditions (Amazon, 1848–1852; Southeast Asia, 1854–1862), Wallace spent the rest of his life in England as a free‐lance science writer. His contributions to systematics (he discovered/described many new species), evolutionary biology, zoogeography, anthropology and other branches of the live sciences are summarized in his 22 books and ca. 700 papers. Since Wallace became an adherent of spiritualism and mixed up supernatural phenomena with scientific facts in some of his later books, he remains a controversial figure in the history of the life sciences.  相似文献   

20.
Son of a country physician, Edwin Grant Conklin grew up in centralOhio and was educated along traditional lines. A decision toenter biology as a profession came only after three years ofteaching a variety of subjects in a private school. Graduatestudy at Johns Hopkins and summer research opportunities atWoods Hole were the doors to a richly productive career as scholar,author and administrator. His research works in embryology andcytology gained him great eminence. An important theme in muchof his work was the role of the cytoplasm in development. Hewrote extensively on evolution and other subjects of generalinterest, among them science and religion, and the nature ofman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号