首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Liver X receptors (LXRs) are important regulators of cholesterol and lipid metabolism. LXR agonists have been shown to limit the cellular cholesterol content by inducing reverse cholesterol transport, increasing bile acid production, and inhibiting intestinal cholesterol absorption. Most of them, however, also increase lipogenesis via sterol regulatory element-binding protein-1c (SREBP1c) and carbohydrate response element-binding protein activation resulting in hypertriglyceridemia and liver steatosis. We report on the antiatherogenic properties of the steroidal liver X receptor agonist N,N-dimethyl-3beta-hydroxy-cholenamide (DMHCA) in apolipoprotein E (apoE)-deficient mice. Long-term administration of DMHCA (11 weeks) significantly reduced lesion formation in male and female apoE-null mice. Notably, DMHCA neither increased hepatic triglyceride (TG) levels in male nor female apoE-deficient mice. ATP binding cassette transporter A1 and G1 and cholesterol 7alpha-hydroxylase mRNA abundances were increased, whereas SREBP1c mRNA expression was unchanged in liver, and even decreased in macrophages and intestine. Short-term treatment revealed even higher changes on mRNA regulation. Our data provide evidence that DMHCA is a strong candidate as therapeutic agent for the treatment or prevention of atherosclerosis, circumventing the negative side effects of other LXR agonists.  相似文献   

5.
6.
肝X受体(liver X receptor,LXRs)是核受体超家族成员,能被氧化的胆固醇衍生物结合并激活,在胆固醇逆向转运中起着非常重要的作用。LXRs在人体的代谢和炎症中都有重要作用。现从获得性免疫反应中LXRs通过调控胞膜的重要组成物质-胆固醇胞内水平,从而抑制T细胞增殖的方向,在硫转移酶2B-肝X受体-膜转运体G1(SULT281-LXR—ABCG1)轴线上探讨LXRs对获得性免疫的调节作用,以及LXRs对神经元衍生孤核受体(NOR-1)的调控作用,以进一步认识LXRs的调控功能。  相似文献   

7.
The StarD4 and StarD5 proteins share approximately 30% identity, and each is a steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. We previously showed StarD4 expression is sterol-repressed, consistent with regulation by sterol regulatory element-binding proteins (SREBPs), whereas StarD5 is not sterol-regulated. Here we further address the regulation and function of StarD4 and StarD5. Unlike StAR, the START family prototype, StarD4 and StarD5 were not induced by steroidogenic stimuli in Leydig cells. However, StarD4 and StarD5 showed StAR-like activity in a cell culture steroidogenesis assay, indicating cholesterol transfer. In transgenic mice expressing active SREBPs, StarD4 was predominantly activated by SREBP-2 rather than SREBP-1a. The mouse and human StarD4 proximal promoters share approximately 70% identity, including several potential sterol regulatory elements (SREs). Reporters driven by the StarD4 promoter from either species were transfected into NIH-3T3 cells, and reporter activity was highly repressed by sterols. Site-directed mutagenesis of potential SREs identified a conserved functional SRE in the mouse (TCGGTCCAT) and human (TCATTCCAT) promoters. StarD5 was not sterol-repressed via SREBPs nor was it sterol-activated via liver X receptors (LXRs). Even though StarD4 and StarD5 were not LXR targets, their overexpression stimulated LXR reporter activity, suggesting roles in cholesterol metabolism. StarD5 expression increased 3-fold in free cholesterol-loaded macrophages, which activate the endoplasmic reticulum (ER) stress response. When NIH-3T3 cells were treated with agents to induce ER stress, StarD5 expression increased 6-8-fold. Because StarD4 is regulated by sterols via SREBP-2, whereas StarD5 is activated by ER stress, they likely serve distinct functions in cholesterol metabolism.  相似文献   

8.
9.
10.
Oxysterols, cholesterol homeostasis, and Alzheimer disease   总被引:5,自引:2,他引:3  
Aberrant cholesterol metabolism has been implicated in Alzheimer disease (AD) and other neurological disorders. Oxysterols and other cholesterol oxidation products are effective ligands of liver X activated receptor (LXR) nuclear receptors, major regulators of genes subserving cholesterol homeostasis. LXR receptors act as molecular sensors of cellular cholesterol concentrations and effectors of tissue cholesterol reduction. Following their interaction with oxysterols, activation of LXRs induces the expression of ATP-binding cassette, sub-family A member 1, a pivotal modulator of cholesterol efflux. The relative solubility of oxysterols facilitates lipid flux among brain compartments and egress across the blood-brain barrier. Oxysterol-mediated LXR activation induces local apoE biosynthesis (predominantly in astrocytes) further enhancing cholesterol re-distribution and removal. Activated LXRs invoke additional neuroprotective mechanisms, including induction of genes governing bile acid synthesis (sterol elimination pathway), apolipoprotein elaboration, and amyloid precursor protein processing. The latter translates into attenuated beta-amyloid production that may ameliorate amyloidogenic neurotoxicity in AD brain. Stress-induced up-regulation of the heme-degrading enzyme, heme oxygenase-1 in AD-affected astroglia may impact central lipid homeostasis by promoting the oxidation of cholesterol to a host of oxysterol intermediates. Synthetic oxysterol-mimetic drugs that activate LXR receptors within the CNS may provide novel therapeutics for management of AD and other neurological afflictions characterized by deranged tissue cholesterol homeostasis.  相似文献   

11.
During the third trimester of pregnancy, there is an increase in serum triglyceride and cholesterol levels. The mechanisms accounting for these changes in lipid metabolism during pregnancy are unknown. We hypothesized that, during pregnancy, the expression of nuclear hormone receptors involved in regulating lipid metabolism would decrease. In 19-day pregnant mice, serum triglyceride and non-HDL cholesterol levels were significantly increased, whereas total cholesterol was slightly decreased, because of a decrease in the HDL fraction. Peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and PPARgamma, liver X receptor (LXR)alpha and LXRbeta, farnesoid X receptor (FXR), and retinoid X receptor (RXR)alpha, RXRbeta, and RXRgamma mRNA levels were significantly decreased in the livers of 19-day pregnant mice. Additionally, the expressions of thyroid receptor (TR)alpha, pregnane X receptor, sterol regulatory element-binding proteins (SREBP)-1a, SREBP-1c, SREBP-2, and liver receptor homolog 1 were also decreased, whereas the expression of TRbeta, constitutive androstane receptor, and hepatic nuclear factor 4 showed no significant change. mRNA levels of the PPAR target genes carnitine-palmitoyl transferase 1alpha and acyl-CoA oxidase, the LXR target genes SREBP1c, ATP-binding cassettes G5 and G8, the FXR target gene SHP, and the TR target genes malic enzyme and Spot14 were all significantly decreased. Finally, the expressions of PPARgamma coactivator (PGC)-1alpha and PGC-1beta, known activators of a number of nuclear hormone receptors, were also significantly decreased. The decreases in expression of RXRs, PPARs, LXRs, FXR, TRs, SREBPs, and PGC-1s could contribute to the alterations in lipid metabolism during late pregnancy.  相似文献   

12.
13.
On the role of liver X receptors in lipid accumulation in adipocytes   总被引:14,自引:0,他引:14  
The pivotal role of liver X receptors (LXRs) in the metabolic conversion of cholesterol to bile acids in mice is well established. More recently, the LXRalpha promoter has been shown to be under tight regulation by peroxisome proliferator-activated receptors (PPARs), implying a role for LXRalpha in mediating the interplay between cholesterol and fatty acid metabolism. We have studied the role of LXR in fat cells and demonstrate that LXR is regulated during adipogenesis and augments fat accumulation in mature adipocytes. LXRalpha expression in murine 3T3-L1 adipocytes as well as in human adipocytes was up-regulated in response to PPARgamma agonists. Administration of a PPARgamma agonist to obese Zucker rats also led to increased LXRalpha mRNA expression in adipose tissue in vivo. LXR agonist treatment of differentiating adipocytes led to increased lipid accumulation. An increase of the expression of the LXR target genes, sterol regulatory binding protein-1 and fatty acid synthase, was observed both in vivo and in vitro after treatment with LXR agonists for 24 h. Finally, we demonstrate that fat depots in LXRalpha/beta-deficient mice are smaller than in age-matched wild-type littermates. These findings imply a role for LXR in controlling lipid storage capacity in mature adipocytes and point to an intriguing physiological interplay between LXR and PPARgamma in controlling pathways in lipid handling.  相似文献   

14.
Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism.  相似文献   

15.
16.
17.
The blood-brain barrier contributes to maintain brain cholesterol metabolism and protects this uniquely balanced system from exchange with plasma lipoprotein cholesterol. Brain capillary endothelial cells, representing a physiological barrier to the central nervous system, express apolipoprotein A-I (apoA-I, the major high-density lipoprotein (HDL)-associated apolipoprotein), ATP-binding cassette transporter A1 (ABCA1), and scavenger receptor, class B, type I (SR-BI), proteins that promote cellular cholesterol mobilization. Liver X receptors (LXRs) and peroxisome-proliferator activated receptors (PPARs) are regulators of cholesterol transport, and activation of LXRs and PPARs has potential therapeutic implications for lipid-related neurodegenerative diseases. To clarify the functional impact of LXR/PPAR activation, sterol transport along the: (i) ABCA1/apoA-I and (ii) SR-BI/HDL pathway was investigated in primary, polarized brain capillary endothelial cells, an in vitro model of the blood-brain barrier. Activation of LXR (24(S)OH-cholesterol, TO901317), PPARalpha (bezafibrate, fenofibrate), and PPARgamma (troglitazone, pioglitazone) modulated expression of apoA-I, ABCA1, and SR-BI on mRNA and/or protein levels without compromising transendothelial electrical resistance or tight junction protein expression. LXR-agonists and troglitazone enhanced basolateral-to-apical cholesterol mobilization in the absence of exogenous sterol acceptors. Along with the induction of cell surface-located ABCA1, several agonists enhanced cholesterol mobilization in the presence of exogenous apoA-I, while efflux of 24(S)OH-cholesterol (the major brain cholesterol metabolite) in the presence of exogenous HDL remained unaffected. Summarizing, in cerebrovascular endothelial cells apoA-I, ABCA1, and SR-BI represent drug targets for LXR and PPAR-agonists to interfere with cholesterol homeostasis at the periphery of the central nervous system.  相似文献   

18.
Overexpression of the adipocyte differentiation and determination factor-1 (ADD-1) or sterol regulatory element binding protein-1 (SREBP-1) induces the expression of numerous genes involved in lipid metabolism, including lipoprotein lipase (LPL). Therefore, we investigated whether LPL gene expression is controlled by changes in cellular cholesterol concentration and determined the molecular pathways involved. Cholesterol depletion of culture medium resulted in a significant induction of LPL mRNA in the 3T3-L1 preadipocyte cell line, whereas addition of cholesterol reduced LPL mRNA expression to basal levels. Similar to the expression of the endogenous LPL gene, the activity of the human LPL gene promoter was enhanced by cholesterol depletion in transient transfection assays, whereas addition of cholesterol caused a reversal of its induction. The effect of cholesterol depletion upon the human LPL gene promoter was mimicked by cotransfection of expression constructs encoding the nuclear form of SREBP-1a, -1c (also called ADD-1) and SREBP-2. Bioinformatic analysis demonstrated the presence of 3 potential sterol regulatory elements (SRE) and 3 ADD-1 binding sequences (ABS), also known as E-box motifs. Using a combination of in vitro protein-DNA binding assays and transient transfection assays of reporter constructs containing mutations in each individual site, a sequence element, termed LPL-SRE2 (SRE2), was shown to be the principal site conferring sterol responsiveness upon the LPL promoter. These data furthermore underscore the importance of SRE sites relative to E-boxes in the regulation of LPL gene expression by sterols and demonstrate that sterols contribute to the control of triglyceride metabolism via binding of SREBP to the LPL regulatory sequences.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号