首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The release of mitochondrial proapoptotic proteins into the cytosol is the key event in apoptosis signaling, leading to the activation of caspases. Once in the cytosol, cytochrome c triggers the formation of a caspase-activating protein complex called the apoptosome, whereas Smac/Diablo and Omi/htra2 antagonize the caspase inhibitory effect of inhibitor of apoptosis proteins (IAPs). Here, we identify diarylurea compounds as effective inhibitors of the cytochrome c-induced formation of the active, approximately 700-kDa apoptosome complex and caspase activation. Using diarylureas to inhibit the formation of the apoptosome complex, we demonstrated that cytochrome c, rather than IAP antagonists, is the major mitochondrial caspase activation factor in tumor cells treated with tumor necrosis factor. Thus, we have identified a novel class of compounds that inhibits apoptosis by blocking the activation of the initiator caspase 9 by directly inhibiting the formation of the apoptosome complex. This mechanism of action is different from that employed by the widely used tetrapeptide inhibitors of caspases or known endogenous apoptosis inhibitors, such as Bcl-2 and IAPs. Thus, these compounds provide a novel specific tool to investigate the role of the apoptosome in mitochondrion-dependent death paradigms.  相似文献   

2.
Apoptosome: the cellular engine for the activation of caspase-9   总被引:11,自引:0,他引:11  
Characterization of the apoptosome by cryo-EM reveals a wheel-shaped heptameric assembly involving Apaf-1 and cytochrome c. This structure provides a framework for understanding the activation mechanisms of caspase-9, an important initiator caspase in apoptosis.  相似文献   

3.
By revealing the biochemistry of apoptosis it is expected we will both improve our understanding of diseases where apoptosis plays an important role and aid the development of therapies for these disorders. Caspases are a family of proteases whose activity is required for apoptosis. In this study, a cell-free system was used to investigate the mechanism of caspase-9 activation in extracts from heart cells. Unlike extracts from other cell types, heart extracts were found to activate caspases poorly. This could be explained by the low levels of Apaf-1 in heart cells. However, subsequent testing showed that heart extracts contained an inhibitor of caspase activation that could block caspase activation in extracts from different cell types. Subsequent purification of the inhibitor of caspase activation from these extracts identified ATP. Caspase-9 is activated by recruitment into a multi-protein complex, the apoptosome, which then activates downstream caspases that kill the cell. Importantly, size exclusion chromatography showed that ATP inhibits apoptosome formation at physiologically relevant concentrations. Together these data support the hypothesis that intracellular ATP concentration is a critical factor in determining whether an apoptotic stimulus can induce apoptosome formation. Thus, the well described fall in intracellular ATP apoptosis is not an epiphenomenon but may be a pro-apoptotic event contributing to cell death.  相似文献   

4.
The release of cytochrome c from mitochondria is necessary for the formation of the Apaf-1 apoptosome and subsequent activation of caspase-9 in mammalian cells. However, the role of cytochrome c in caspase activation in Drosophila cells is not well understood. We demonstrate here that cytochrome c remains associated with mitochondria during apoptosis of Drosophila cells and that the initiator caspase DRONC and effector caspase DRICE are activated after various death stimuli without any significant release of cytochrome c in the cytosol. Ectopic expression of the proapoptotic Bcl-2 protein, DEBCL, also fails to show any cytochrome c release from mitochondria. A significant proportion of cellular DRONC and DRICE appears to localize near mitochondria, suggesting that an apoptosome may form in the vicinity of mitochondria in the absence of cytochrome c release. In vitro, DRONC was recruited to a >700-kD complex, similar to the mammalian apoptosome in cell extracts supplemented with cytochrome c and dATP. These results suggest that caspase activation in insects follows a more primitive mechanism that may be the precursor to the caspase activation pathways in mammals.  相似文献   

5.
Apoptosomes are signaling platforms that initiate the dismantling of a cell during apoptosis. In mammals, assembly of the apoptosome is the pivotal point in the mitochondrial pathway of apoptosis, and is prompted by binding of cytochrome c to the apoptotic protease-activating factor 1 (Apaf-1) in the presence of ATP. The resulting wheel-like heptamer of seven molecules Apaf-1 and seven molecules cytochrome c binds and activates the initiator caspase-9, which in turn ignites the downstream caspase cascade. In this review we discuss the molecular determinants for the formation of the mammalian apoptosome and caspase activation and describe the related signaling platforms in flies and nematodes.  相似文献   

6.
The mitochondrial apoptosome: a killer unleashed by the cytochrome seas.   总被引:29,自引:0,他引:29  
The caspase family of cysteine proteases have emerged as central regulators of apoptosis. Diverse cellular stresses trigger caspase activation by promoting release of mitochondrial components, including cytochrome c, into the cytoplasm. In turn, cytochrome c promotes the assembly of a caspase-activating complex termed the apoptosome. In this article, the apoptosome and its role in life and death decisions of cells are discussed.  相似文献   

7.
Previous results have shown that the oncoembryonic marker alpha-fetoprotein (AFP) is able to induce apoptosis in tumor cells through activation of caspase 3, bypassing Fas-dependent and tumor necrosis factor receptor-dependent signaling. In this study we further investigate the molecular interactions involved in the AFP-mediated signaling of apoptosis. We show that AFP treatment of tumor cells is accompanied by cytosolic translocation of mitochondrial cytochrome c. In a cell-free system, AFP mediates processing and activation of caspases 3 and 9 by synergistic enhancement of the low-dose cytochrome c-mediated signals. AFP was unable to regulate activity of caspase 3 in cell extracts depleted of cytochrome c or caspase 9. Using high-resolution chromatography, we show that AFP positively regulates cytochrome c/dATP-mediated apoptosome complex formation, enhances recruitment of caspases and Apaf-1 into the complex, and stimulates release of the active caspases 3 and 9 from the apoptosome. By using a direct protein-protein interaction assay, we show that pure human AFP almost completely disrupts the association between processed caspases 3 and 9 and the cellular inhibitor of apoptosis protein (cIAP-2), demonstrating its release from the complex. Our data suggest that AFP may regulate cell death by displacing cIAP-2 from the apoptosome, resulting in promotion of caspase 3 activation and its release from the complex.  相似文献   

8.
The cellular-stress response can mediate cellular protection through expression of heat-shock protein (Hsp) 70, which can interfere with the process of apoptotic cell death. Stress-induced apoptosis proceeds through a defined biochemical process that involves cytochrome c, Apaf-1 and caspase proteases. Here we show, using a cell-free system, that Hsp70 prevents cytochrome c/dATP-mediated caspase activation, but allows the formation of Apaf-1 oligomers. Hsp70 binds to Apaf-1 but not to procaspase-9, and prevents recruitment of caspases to the apoptosome complex. Hsp70 therefore suppresses apoptosis by directly associating with Apaf-1 and blocking the assembly of a functional apoptosome.  相似文献   

9.
Apoptosome: a platform for the activation of initiator caspases   总被引:1,自引:0,他引:1  
Apoptosome refers to the adaptor protein complex that mediates the activation of an initiator caspase at the onset of apoptosis. In mammalian cells, caspase-9, caspase-8, and caspase-2 rely on the apoptotic protease-activating factor 1 (Apaf-1)-apoptosome, death-inducing signaling complex (DISC), and PIDDosome, respectively, for activation. In Drosophila, activation of the caspase-9 homolog Dronc requires assembly of an apoptosome comprised of Dark/Hac-1/Dapaf-1. In Caenorhabditis elegans, activation of the caspase CED-3 is facilitated by the CED-4-apoptosome. Recent biochemical and structural investigation revealed significant insights into the assembly and function of the various apoptosomes. Nonetheless, conclusive mechanisms by which the initiator caspases are activated by the apoptosomes remain elusive. Several models have been proposed to explain the activation process. The induced proximity model summarizes the general process of initiator caspase activation. The proximity-driven dimerization model describes how initiator caspases respond to induced proximity and offers an explanation for their activation. Regardless of how initiator caspases are activated, enhanced activity must be correlated with altered active site conformation. The induced conformation model posits that the activated conformation for the active site of a given initiator caspase is attained through direct interaction with the apoptosome or through homo-oligomerization facilitated by the apoptosome.  相似文献   

10.
Differentiation is an inseparable process of development in multicellular organisms. Mouse embryonic stem cells (mESCs) represent a valuable research tool to conduct in vitro studies of cell differentiation. Apoptosis as a well known cell death mechanism shows some common features with cell differentiation, which has caused a number of ambiguities in the field. The research question here is how cells could differentiate these two processes from each other. We have investigated the role of the mitochondrial apoptotic pathway and cell energy level during differentiation of mESCs into the cardiomyocytes and their apoptosis. p53 expression, cytochrome c release, apoptosome formation, and caspase-3/7 activation are observed upon induction of both apoptosis and differentiation. However, remarkable differences are detected in time of cytochrome c appearance, apoptosome formation, and caspase activity upon induction of both processes. In apoptosis, apoptosome formation and caspase activity were observed rapidly following the cytochrome c release. Unlike apoptosis, the release of cytochrome c upon differentiation took more time, and the maximum caspase activity was also postponed for 24 h. This delay suggests that there is a regulatory mechanism during differentiation of mESCs into cardiomyocytes. The highest ATP content of cells was observed immediately after cytochrome c release 6 h after apoptosis induction and then decreased, but it was gradually increased up to 48 h after differentiation. These observations suggest that a delay in the release of cytochrome c or delay in ATP increase attenuate apoptosome formation, and caspase activation thereby discriminates apoptosis from differentiation in mESCs.  相似文献   

11.
Cytochrome c (CC)-initiated Apaf-1 apoptosome formation represents a key initiating event in apoptosis. This process can be reconstituted in vitro with the addition of CC and ATP or dATP to cell lysates. How physiological levels of nucleotides, normally at high mM concentrations, affect apoptosome activation remains unclear. Here we show that physiological levels of nucleotides inhibit the CC-initiated apoptosome formation and caspase-9 activation by directly binding to CC on several key lysine residues and thus preventing CC interaction with Apaf-1. We show that in various apoptotic systems caspase activation is preceded or accompanied by decreases in overall intracellular NTP pools. Microinjection of nucleotides inhibits whereas experimentally reducing NTP pools enhances both CC and apoptotic stimuli-induced cell death. Our results thus suggest that the intracellular nucleotides represent critical prosurvival factors by functioning as natural inhibitors of apoptosome formation and a barrier that cells must overcome the nucleotide barrier to undergo apoptosis cell death.  相似文献   

12.
Despite the potential of the inhibitor of apoptosis proteins (IAPs) to block cytochrome c-dependent caspase activation, the critical function of IAPs in regulating mammalian apoptosis remains unclear. We report that the ability of endogenous IAPs to effectively regulate caspase activation depends on the differentiation state of the cell. Despite being expressed at equivalent levels, endogenous IAPs afforded no protection against cytochrome c-induced apoptosis in naive pheochromocytoma (PC12) cells, but were remarkably effective in doing so in neuronally differentiated cells. Neuronal differentiation was also accompanied with a marked reduction in Apaf-1, resulting in a significant decrease in apoptosome activity. Importantly, this decrease in Apaf-1 protein was directly linked to the increased ability of IAPs to stringently regulate apoptosis in neuronally differentiated PC12 and primary cells. These data illustrate specifically how the apoptotic pathway acquires increased regulation with cellular differentiation, and are the first to show that IAP function and apoptosome activity are coupled in cells.  相似文献   

13.
During stress‐induced apoptosis, the initiator caspase‐9 is activated by the Apaf‐1 apoptosome and must remain bound to retain significant catalytic activity. Nevertheless, in apoptotic cells the vast majority of processed caspase‐9 is paradoxically observed outside the complex. We show herein that apoptosome‐mediated cleavage of procaspase‐9 occurs exclusively through a CARD‐displacement mechanism, so that unlike the effector procaspase‐3, procaspase‐9 cannot be processed by the apoptosome as a typical substrate. Indeed, procaspase‐9 possessed higher affinity for the apoptosome and could displace the processed caspase‐9 from the complex, thereby facilitating a continuous cycle of procaspase‐9 recruitment/activation, processing, and release from the complex. Owing to its rapid autocatalytic cleavage, however, procaspase‐9 per se contributed little to the activation of procaspase‐3. Thus, the Apaf‐1 apoptosome functions as a proteolytic‐based ‘molecular timer’, wherein the intracellular concentration of procaspase‐9 sets the overall duration of the timer, procaspase‐9 autoprocessing activates the timer, and the rate at which the processed caspase‐9 dissociates from the complex (and thus loses its capacity to activate procaspase‐3) dictates how fast the timer ‘ticks’ over.  相似文献   

14.
A novel Apaf-1-independent putative caspase-2 activation complex   总被引:12,自引:0,他引:12  
Caspase activation is a key event in apoptosis execution. In stress-induced apoptosis, the mitochondrial pathway of caspase activation is believed to be of central importance. In this pathway, cytochrome c released from mitochondria facilitates the formation of an Apaf-1 apoptosome that recruits and activates caspase-9. Recent data indicate that in some cells caspase-9 may not be the initiator caspase in stress-mediated apoptosis because caspase-2 is required upstream of mitochondria for the release of cytochrome c and other apoptogenic factors. To determine how caspase-2 is activated, we have studied the formation of a complex that mediates caspase-2 activation. Using gel filtration analysis of cell lysates, we show that caspase-2 is spontaneously recruited to a large protein complex independent of cytochrome c and Apaf-1 and that recruitment of caspase-2 to this complex is sufficient to mediate its activation. Using substrate-binding assays, we also provide the first evidence that caspase-2 activation may occur without processing of the precursor molecule. Our data are consistent with a model where caspase-2 activation occurs by oligomerization, independent of the Apaf-1 apoptosome.  相似文献   

15.
Cytochrome C has two apparently separable cellular functions: respiration and caspase activation during apoptosis. While a role of the mitochondria and cytochrome C in the assembly of the apoptosome and caspase activation has been established for mammalian cells, the existence of a comparable function for cytochrome C in invertebrates remains controversial. Drosophila possesses two cytochrome c genes, cyt-c-d and cyt-c-p. We show that only cyt-c-d is required for caspase activation in an apoptosis-like process during spermatid differentiation, whereas cyt-c-p is required for respiration in the soma. However, both cytochrome C proteins can function interchangeably in respiration and caspase activation, and the difference in their genetic requirements can be attributed to differential expression in the soma and testes. Furthermore, orthologues of the apoptosome components, Ark (Apaf-1) and Dronc (caspase-9), are also required for the proper removal of bulk cytoplasm during spermatogenesis. Finally, several mutants that block caspase activation during spermatogenesis were isolated in a genetic screen, including mutants with defects in spermatid mitochondrial organization. These observations establish a role for the mitochondria in caspase activation during spermatogenesis.  相似文献   

16.
The programmed cell death usually is identified with apoptosis, though a scheduled sequence of events can be observed also in autophagy, mitotic catastrophe and, under certain circumstances, in necrosis. Apoptosis begins with activation of the initiator caspases (cysteine proteases) in the signaling complexes: the apoptosome (on the intrinsic or mitochondrial pathway) or the degradosome (on the extrinsic or death receptor pathway). The proteolytic cascade then leads, through activation of downstream caspases and DNases, to digestion of cell components. Mitochondria play a central role in apoptosis by releasing cytochrome c--the essential component of the apoptosome, Smac/Diablo and OmiI/HtrA2--that bind the caspase inhibitors (IAPs), and endonuclease G and AIF--that are responsible for DNA degradation. Those factors get out of mitochondrium through the Bax and Bak protein-containing channels. The process is fast and complete, probably due to mechanoenzyme--driven remodeling of the organellum structure as well as to phospholipid peroxidation and proteolysis in the inner membrane. The release of the mitochondrial factors can be stimulated by protein p53, histone H1.2 and poly(ADP-ribose) that are sent from the nucleus in consequence of a cyto- and genotoxic stress, under the control of cAbl kinase.  相似文献   

17.
Initiator caspases in apoptosis signaling pathways   总被引:15,自引:0,他引:15  
Death receptor- or mitochondrion-dependent apoptosis is initiated by the recruitment and activation of apical caspases in the apoptosis signaling pathways. In death receptor-mediated apoptosis, engagement of death receptors leads to the formation of the death-inducing signaling complex (DISC) containing the death receptors, adaptor proteins, caspase-8 and caspase-10. In mitochondrion-dependent apoptosis, release of cytochrome C into the cytosol results in the formation of apoptosome containing cytochrome C, Apaf-1 and caspase-9. Caspase-8, caspase-10 and caspase-9 are believed to be the initiator caspases at the top of the caspase signaling cascade. Recruitment of caspases to DISC and apoptosome leads to their activation by dimer formation. Recent biochemical and structural analyses of components in the DISC and apoptosome shed new lights on their roles in inducing the onset of apoptosis signaling.  相似文献   

18.
Mechanisms of caspase activation and inhibition during apoptosis   总被引:8,自引:0,他引:8  
Shi Y 《Molecular cell》2002,9(3):459-470
Caspases are central components of the machinery responsible for apoptosis. Recent structural and biochemical studies on procaspases, IAPs, Smac/DIABLO, and apoptosome have revealed a conserved mechanism of caspase activation and inhibition. This article reviews these latest advances and presents our current understanding of caspase regulation during apoptosis.  相似文献   

19.
Key structural and catalytic features are conserved across the entire family of cysteine-dependent aspartate-specific proteases (caspases). Of the caspases involved in apoptosis signal transduction, the initiator caspases-2, -8 and -9 are activated at multi-protein activation platforms, and activation is thought to involve homo-dimerisation of the monomeric zymogens. Caspase-9, the essential initiator caspase required for apoptosis signalling through the mitochondrial pathway, is activated on the apoptosome complex, and failure to activate caspase-9 has profound pathophysiological consequences. Here, we review the pertinent literature on which the currently prevalent understanding of caspase-9 activation is based, extend this view by insight obtained from recent structural and kinetic studies on caspase-9 signalling, and describe an emerging model for the regulation of caspase-9 activation and activity that arise from the complexity of multi-protein interactions at the apoptosome. This integrated view allows us to postulate and to discuss functional consequences for caspase-9 activation and apoptosis execution that may take centre stage in future experimental cell research on apoptosis signalling.  相似文献   

20.
In many forms of apoptosis, cytochrome c released from mitochondria induces the oligomerization of Apaf-1 to form a caspase-activating apoptosome complex. Activation of lysates in vitro with dATP and cytochrome c results in the formation of an active caspase-processing approximately 700-kDa apoptosome complex, which predominates in apoptotic cells, and a relatively inactive approximately 1.4-MDa complex. We now demonstrate that assembly of the active complex is suppressed by normal intracellular concentrations of K(+). Using a defined apoptosome reconstitution system with recombinant Apaf-1 and cytochrome c, K(+) also inhibits caspase activation by abrogating Apaf-1 oligomerization and apoptosome assembly. Once assembled, the apoptosome is relatively insensitive to the effects of ionic strength and processes/activates effector caspases. The inhibitory effects of K(+) on apoptosome formation are antagonized in a concentration-dependent manner by cytochrome c. These studies support the hypothesis that the normal intracellular concentrations of K(+) act to safeguard the cell against inappropriate formation of the apoptosome complex, caused by the inadvertent release of small amounts of cytochrome c. Thus, the assembly and activation of the apoptosome complex in the cell requires the rapid and extensive release of cytochrome c to overcome the inhibitory effects of normal intracellular concentrations of K(+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号