首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have partially purified myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) from Dictyostelium discoideum. MLCK was purified 4,700-fold with a yield of approximately 1 mg from 350 g of cells. The enzyme is very acidic as suggested by its tight binding to DEAE. Dictyostelium MLCK has an apparent native molecular mass on HPLC G3000SW of approximately 30,000 D. Mg2+ is required for enzyme activity. Ca2+ inhibits activity and this inhibition is not relieved by calmodulin. cAMP or cGMP have no effect on enzyme activity. Dictyostelium MLCK is very specific for the 18,000-D light chain of Dictyostelium myosin and does not phosphorylate the light chain of several other myosins tested. Myosin purified from log-phase amebas of Dictyostelium has approximately 0.3 mol Pi/mol 18,000-D light chain as assayed by glycerol-urea gel electrophoresis. Dictyostelium MLCK can phosphorylate this myosin to a stoichiometry approaching 1 mol Pi/mol 18,000-D light chain. MLCP, which was partially purified, selectively removes phosphate from the 18,000-D light chain but not from the heavy chain of Dictyostelium myosin. Phosphatase-treated Dictyostelium myosin has less than or equal to 0.01 mol Pi/mol 18,000-D light chain. Phosphatase-treated myosin could be rephosphorylated to greater than or equal to 0.96 mol Pi/mol 18,000-D light chain by incubation with MLCK and ATP. We found myosin thick filament assembly to be independent of the extent of 18,000-D light-chain phosphorylation when measured as a function of ionic strength. However, actin-activated Mg2+-ATPase activity of Dictyostelium myosin was found to be directly related to the extent of phosphorylation of the 18,000-D light chain. MLCK-treated myosin moved in an in vitro motility assay (Sheetz, M. P., and J. A. Spudich, 1983, Nature (Lond.), 305:31-35) at approximately 1.4 micron/s whereas phosphatase-treated myosin moved only slowly or not at all. The effects of phosphatase treatment on the movement were fully reversed by subsequent treatment with MLCK.  相似文献   

2.
Vascular tone, an important determinant of systemic vascular resistance and thus blood pressure, is affected by vascular smooth muscle (VSM) contraction. Key signaling pathways for VSM contraction converge on phosphorylation of the regulatory light chain (RLC) of smooth muscle myosin. This phosphorylation is mediated by Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) but Ca(2+)-independent kinases may also contribute, particularly in sustained contractions. Signaling through MLCK has been indirectly implicated in maintenance of basal blood pressure, whereas signaling through RhoA has been implicated in salt-induced hypertension. In this report, we analyzed mice with smooth muscle-specific knockout of MLCK. Mesenteric artery segments isolated from smooth muscle-specific MLCK knockout mice (MLCK(SMKO)) had a significantly reduced contractile response to KCl and vasoconstrictors. The kinase knockout also markedly reduced RLC phosphorylation and developed force. We suggest that MLCK and its phosphorylation of RLC are required for tonic VSM contraction. MLCK(SMKO) mice exhibit significantly lower basal blood pressure and weaker responses to vasopressors. The elevated blood pressure in salt-induced hypertension is reduced below normotensive levels after MLCK attenuation. These results suggest that MLCK is necessary for both physiological and pathological blood pressure. MLCK(SMKO) mice may be a useful model of vascular failure and hypotension.  相似文献   

3.
Smooth muscle myosin light chain kinase (MLCK) is known to bind to thin filaments and myosin filaments. Telokin, an independently expressed protein with an identical amino acid sequence to that of the C-terminal domain of MLCK, has been shown to bind to unphosphorylated smooth muscle myosin. Thus, the functional significance of the C-terminal domain and the molecular morphology of MLCK were examined in detail. The C-terminal domain was removed from MLCK by alpha-chymotryptic digestion, and the activity of the digested MLCK was measured using myosin or the isolated 20-kDa light chain (LC20) as a substrate. The results showed that the digestion increased K(m) for myosin 3-fold whereas it did not change the value for LC20. In addition, telokin inhibited the phosphorylation of myosin by MLCK by increasing K(m) but only slightly increased K(m) for LC20. Electron microscopy indicated that MLCK was an elongated molecule but was flexible so as to form folded conformations. MLCK was crosslinked to unphosphorylated heavy meromyosin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the absence of Ca(2+)/calmodulin (CaM), and electron microscopic observation of the products revealed that the MLCK molecule bound to the head-tail junction of heavy meromyosin. These results suggest that MLCK binds to the head-tail junction of unphosphorylated myosin through its C-terminal domain, where LC20 can be promptly phosphorylated through its catalytic domain following the Ca(2+)/CaM-dependent activation.  相似文献   

4.
目的:探寻MLCK的非激酶活性区域对MLCK活性的影响,进一步阐明MLCK的非激酶活性在调节平滑肌收缩过程中的分子机制。方法:利用编码MLCK全长的pColdI表达载体对其ATP结合位点进行定点突变,获得无激酶活性的MLCK突变体;应用Glycerol—PAGE鉴定肌球蛋白磷酸化水平;应用孔雀绿方法检测重组MLCK对肌球蛋白ATP酶活性的影响。结果:MLCK/△ATP(突变型)失去磷酸化肌球蛋白轻链的激酶活性;重组MLCK(野生型)和MLCK/AATP(突变型)均可以在非钙条件下激活非磷酸化肌球蛋白Mg2+-ATP酶活性,抑制磷酸化肌球蛋白的Mg2+.ATP酶活性,而且激活与抑制作用均随着MLCK浓度的增加而增大,但二者对肌球蛋白的ATP酶活性的作用没有显著差异(P〉0.05)。结论:平滑肌肌球蛋白轻链激酶及ATP结合位点突变体具有激活非磷酸化肌球蛋白ATP酶活性的作用。  相似文献   

5.
We report that the genetic locus that encodes vertebrate smooth muscle and nonmuscle myosin light chain kinase (MLCK) and kinase-related protein (KRP) has a complex arrangement and a complex pattern of expression. Three proteins are encoded by 31 exons that have only one variation, that of the first exon of KRP, and the genomic locus spans approximately 100 kb of DNA. The three proteins can differ in their relative abundance and localization among tissues and with development. MLCK is a calmodulin (CaM) regulated protein kinase that phosphorylates the light chain of myosin II. The chicken has two MLCK isoforms encoded by the MLCK/KRP locus. KRP does not bind CaM and is not a protein kinase. However, KRP binds to and regulates the structure of myosin II. Thus, KRP and MLCK have the same subcellular target, the myosin II molecular motor system. We examined the tissue and cellular localization of KRP and MLCK in the chicken embryo and in adult chicken tissues. We report on the selective localization of KRP and MLCK among and within tissues and on a differential distribution of the proteins between embryonic and adult tissues. The results fill a void in our knowledge about the organization of the MLCK/KRP genetic locus, which appears to be a late evolving regulatory paradigm, and suggest an independent and complex regulation of expression of the gene products from the MLCK/KRP genetic locus that may reflect a basic principle found in other eukaryotic gene clusters that encode functionally linked proteins. J. Cell. Biochem. 70:402–413, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
The aim of the present study is to determine the effects and molecular mechanisms by which activation of LKB1-AMP-activated protein kinase (AMPK) by metformin regulates vascular smooth muscle contraction. The essential ability of vascular smooth muscle cells (VSMCs) to contract and relax in response to an elevation and reduction in intravascular pressure is necessary for appropriate blood flow regulation. Thus, vessel contraction is a critical mechanism for systemic blood flow regulation. In cultured rat VSMCs, AMPK activation through LKB1 by metformin-inhibited phenylephrine-mediated myosin light chain kinase (MLCK) and myosin light chain phosphorylation (p-MLC). Conversely, inhibition of AMPK and LKB1 reversed phenylephrine-induced MLCK and p-MLC phosphorylation. Measurement of the tension trace in rat aortic rings also showed that the effect of AMPK activation by metformin decreased phenylephrine-induced contraction. Metformin inhibited PE-induced p-MLC and α-smooth muscle actin co-localization. Our results suggest that activation of AMPK by LKB1 decreases VSMC contraction by inhibiting MLCK and p-MLC, indicating that induction by the AMPK-LKB1 pathway may be a new therapeutic target to lower high blood pressure.  相似文献   

7.
The intrinsic ability of vascular smooth muscle cells (VSMCs) within arterial resistance vessels to respectively contract and relax in response to elevation and reduction of intravascular pressure is essential for appropriate blood flow autoregulation. This fundamental mechanism, referred to as the myogenic response, is dependent on apposite control of myosin regulatory light chain (LC20) phosphorylation, a prerequisite for force generation, through the coordinated activity of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Here, we highlight the molecular basis of the smooth muscle contractile mechanism and review the regulatory pathways demonstrated to participate in the control of LC20 phosphorylation in the myogenic response, with a focus on the Ca2+-dependent and Rho-associated kinase (ROK)-mediated regulation of MLCK and MLCP, respectively.  相似文献   

8.
9.
Myosin light chain kinase (MLCK) phosphorylates the light chain of smooth muscle myosin enabling its interaction with actin. This interaction initiates smooth muscle contraction. MLCK has another role that is not attributable to its phosphorylating activity, i.e., it inhibits the ATP-dependent movement of actin filaments on a glass surface coated with phosphorylated myosin. To analyze the inhibitory effect of MLCK, the catalytic domain of MLCK was obtained with or without the regulatory sequence adjacent to the C-terminal of the domain, and the inhibitory effect of the domain was examined by the movement of actin filaments. All the domains work so as to inhibit actin filament movement whether or not the regulatory sequence is included. When the domain includes the regulatory sequence, calmodulin in the presence of calcium abolishes the inhibition. Since the phosphorylation reaction is not involved in regulating the movement by MLCK, and a catalytic fragment that shows no kinase activity also inhibits movement, the kinase activity is not related to inhibition. Higher concentrations of MLCK inhibit the binding of actin filaments to myosin-coated surfaces as well as their movement. We discuss the dual roles of the domain, the phosphorylation of myosin that allows myosin to cross-bridge with actin and a novel function that breaks cross-bridging.  相似文献   

10.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

11.
Many tumors are stiffer than their surrounding tissue. This increase in stiffness has been attributed, in part, to a Rho-dependent elevation of myosin II light chain phosphorylation. To characterize this mechanism further, we studied myosin light chain kinase (MLCK), the main enzyme that phosphorylates myosin II light chains. We anticipated that increases in MLCK expression and activity would contribute to the increased stiffness of cancer cells. However, we find that MLCK mRNA and protein levels are substantially less in cancer cells and tissues than in normal cells. Consistent with this observation, cancer cells contract 3D collagen matrices much more slowly than normal cells. Interestingly, inhibiting MLCK or Rho kinase did not affect the 3D gel contractions while blebbistatin partially and cytochalasin D maximally inhibited contractions. Live cell imaging of cells in collagen gels showed that cytochalasin D inhibited filopodia-like projections that formed between cells while a MLCK inhibitor had no effect on these projections. These data suggest that myosin II phosphorylation is dispensable in regulating the mechanical properties of tumors.  相似文献   

12.
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca2+ flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca2+ channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca2+ channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca2+ entry in VSM is described in the present review.  相似文献   

13.
Phosphorylation of myosin II regulatory light chains (RLC) by Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) is a critical step in the initiation of smooth muscle and non-muscle cell contraction. Post-translational modifications to MLCK down-regulate enzyme activity, suppressing RLC phosphorylation, myosin II activation, and tension development. Here we report that PAK2, a member of the Rho family of GTPase-dependent kinases, regulates isometric tension development and myosin II RLC phosphorylation in saponin permeabilized endothelial monolayers. PAK2 blunts tension development by 75% while inhibiting diphosphorylation of myosin II RLC. Cdc42-activated placenta and recombinant, constitutively active PAK2 phosphorylate MLCK in vitro with a stoichiometry of 1.71 +/- 0. 21 mol of PO(4)/mol of MLCK. This phosphorylation inhibits MLCK phosphorylation of myosin II RLC. PAK2 catalyzes MLCK phosphorylation on serine residues 439 and 991. Binding calmodulin to MLCK blocks phosphorylation of Ser-991 by PAK2. These results demonstrate that PAK2 can directly phosphorylate MLCK, inhibiting its activity and limiting the development of isometric tension.  相似文献   

14.
The catalytic domain of myosin light chain kinase (MLCK) not only exerts kinase activity to phosphorylate the 20 kDa light chain but also inhibits the actin-myosin interaction. The site of action of this novel role of the domain has been suggested to be myosin [Okagaki et al. (1999) J. Biochem. 125, 619-626]. In this study, we have analyzed the amino acid sequences of MLCK and myosin that are involved in the inhibition. The ATP-binding peptide of Gly526-Lys548 of chicken gizzard MLCK exerted the inhibitory effect on the movement of actin filaments on a myosin-coated glass surface. However, the peptide that neighbors the sequence failed to inhibit the movement. The inhibition of the ATP-binding peptide was confirmed by measuring ATPase activities of the myosin. The inhibition by parent MLCK of the movement was relieved by the 20 kDa light chain, but not by the 17 kDa myosin light chain. The peptide of the 20 kDa light chain sequence of Ser1-Glu29 also relieved the inhibition. Thus, the interaction of the ATP-binding sequence with the 20 kDa light chain sequence should cause the inhibition of the actin-myosin interaction. Concerning the regulation of the inhibition, calmodulin relieved the inhibitory effect of MLCK on the movement of actin filaments. The calmodulin-binding peptide (Ala796 Ser815) prevented the relief, suggesting the involvement of this sequence. Thus, the mode of regulation by Ca2+ and calmodulin of the novel role of the catalytic domain is similar, but not identical, to the mode of regulation of the kinase activity of the domain.  相似文献   

15.
Neural stem cells (NSCs) migration is essential for neurogenesis and neuroregeneration after brain injury. Nestin, a widely used marker of NSCs, is expressed abundantly in several cancers, where it may correlate with tumor migration and invasion. However, it is not yet known whether nestin participates in NSC migration. Here, we show that nestin down-regulation significantly inhibits the migration and contraction of murine neural stem cells, but does not obviously influence the proliferation, filamentous actin (F-actin) content, distribution or focal adhesion assembly of these cells. Mechanistically, nestin knockdown was found to affect the phosphorylation state of myosin regulatory light chain (MRLC) and regulate the activity of myosin light chain kinase (MLCK). Co-immunoprecipitation experiments showed that it interacts with MLCK and MRLC. Together, our results indicate that nestin may increase NSC motility via elevating MLCK activity through direct binding and provide new insight into the roles of nestin in NSC migration and repair.  相似文献   

16.
Analysis of myosin light chain kinase (MLCK) activity in tibialis anterior muscles of the rabbit revealed that chronic stimulation at a frequency of 10 Hz for 24 h per day reduced the enzyme activity in a timedependent manner. Since fast twitch muscle contains significantly more myosin light chain kinase than slow twitch muscle, the observed reductions are consistent with the type of fast-to-slow transformation observed for other type-specific muscle characteristics. The present data also indicate that the stimulation-induced decrease in MLCK activity precedes the fast-to-slow conversion of the myosin molecule as judged by pyrophosphate-polyacrylamide gel electrophoresis.  相似文献   

17.
Phosphorylation on Ser 19 of the myosin II regulatory light chain by myosin light chain kinase (MLCK) regulates actomyosin contractility in smooth muscle and vertebrate nonmuscle cells. The smooth/nonmuscle MLCK gene locus produces two kinases, a high molecular weight isoform (long MLCK) and a low molecular weight isoform (short MLCK), that are differentially expressed in smooth and nonmuscle tissues. To study the relative localization of the MLCK isoforms in cultured nonmuscle cells and to determine the spatial and temporal dynamics of MLCK localization during mitosis, we constructed green fluorescent protein fusions of the long and short MLCKs. In interphase cells, localization of the long MLCK to stress fibers is mediated by five DXRXXL motifs, which span the junction of the NH(2)-terminal extension and the short MLCK. In contrast, localization of the long MLCK to the cleavage furrow in dividing cells requires the five DXRXXL motifs as well as additional amino acid sequences present in the NH(2)-terminal extension. Thus, it appears that nonmuscle cells utilize different mechanisms for targeting the long MLCK to actomyosin structures during interphase and mitosis. Further studies have shown that the long MLCK has twofold lower kinase activity in early mitosis than in interphase or in the early stages of postmitotic spreading. These findings suggest a model in which MLCK and the myosin II phosphatase (Totsukawa, G., Y. Yamakita, S. Yamashiro, H. Hosoya, D.J. Hartshorne, and F. Matsumura. 1999. J. Cell Biol. 144:735-744) act cooperatively to regulate the level of Ser 19-phosphorylated myosin II during mitosis and initiate cytokinesis through the activation of myosin II motor activity.  相似文献   

18.
Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates smooth muscle myosin regulatory light chain (RLC) to initiate contraction. We used a tamoxifen-activated, smooth muscle-specific inactivation of MLCK expression in adult mice to determine whether MLCK was differentially limiting in distinct smooth muscles. A 50% decrease in MLCK in urinary bladder smooth muscle had no effect on RLC phosphorylation or on contractile responses, whereas an 80% decrease resulted in only a 20% decrease in RLC phosphorylation and contractile responses to the muscarinic agonist carbachol. Phosphorylation of the myosin light chain phosphatase regulatory subunit MYPT1 at Thr-696 and Thr-853 and the inhibitor protein CPI-17 were also stimulated with carbachol. These results are consistent with the previous findings that activation of a small fraction of MLCK by limiting amounts of free Ca2+/calmodulin combined with myosin light chain phosphatase inhibition is sufficient for robust RLC phosphorylation and contractile responses in bladder smooth muscle. In contrast, a 50% decrease in MLCK in aortic smooth muscle resulted in 40% inhibition of RLC phosphorylation and aorta contractile responses, whereas a 90% decrease profoundly inhibited both responses. Thus, MLCK content is limiting for contraction in aortic smooth muscle. Phosphorylation of CPI-17 and MYPT1 at Thr-696 and Thr-853 were also stimulated with phenylephrine but significantly less than in bladder tissue. These results indicate differential contributions of MLCK to signaling. Limiting MLCK activity combined with modest Ca2+ sensitization responses provide insights into how haploinsufficiency of MLCK may result in contractile dysfunction in vivo, leading to dissections of human thoracic aorta.  相似文献   

19.
Phosphorylation of the regulatory light chain by myosin light chain kinase (MLCK) regulates the motor activity of smooth muscle and nonmuscle myosin II. We have designed reagents to detect this phosphorylation event in living cells. A new fluorescent protein biosensor of myosin II regulatory light chain phosphorylation (FRLC-Rmyosin II) is described here. The biosensor depends upon energy transfer from fluorescein-labeled regulatory light chains to rhodamine-labeled essential and/or heavy chains. The energy transfer ratio increases by up to 26% when the regulatory light chain is phosphorylated by MLCK. The majority of the change in energy transfer is from regulatory light chain phosphorylation by MLCK (versus phosphorylation by protein kinase C). Folding/unfolding, filament assembly, and actin binding do not have a large effect on the energy transfer ratio. FRLC-Rmyosin II has been microinjected into living cells, where it incorporates into stress fibers and transverse fibers. Treatment of fibroblasts containing FRLC-Rmyosin II with the kinase inhibitor staurosporine produced a lower ratio of rhodamine/fluorescein emission, which corresponds to a lower level of myosin II regulatory light chain phosphorylation. Locomoting fibroblasts containing FRLC-Rmyosin II showed a gradient of myosin II phosphorylation that was lowest near the leading edge and highest in the tail region of these cells, which correlates with previously observed gradients of free calcium and calmodulin activation. Maximal myosin II motor force in the tail may contribute to help cells maintain their polarized shape, retract the tail as the cell moves forward, and deliver disassembled subunits to the leading edge for incorporation into new fibers.  相似文献   

20.
The functions associated with the inhibitory region and calmodulin binding region of smooth muscle myosin light chain kinase (MLCK) were studied using various synthetic peptide analogs. Peptides 480-501 and 483-498 strongly inhibited 61 kDa Ca2+/calmodulin-independent MLCK activity with Ki of 25 nM. Peptides 493-512 and 493-504 were considerably less effective as inhibitor of the Ca2+/calmodulin-independent MLCK and Kiapp. were 2 and 3 microM, respectively. Inhibition of Ca2+/calmodulin-independent MLCK by the peptides 480-501 and 483-498 were competitive with ATP and 20,000 dalton smooth muscle myosin light chain. The inhibition of native MLCK by peptide 493-512 was explained by the calmodulin depletion model in which the peptide binds to free calmodulin and prevents it from activating MLCK. On the other hand, the inhibition of native MLCK by the peptides 480-501 and 483-498 was explained by the binding of these peptides to the MLCK-calmodulin complex. The present study suggests that the inhibitory region of MLCK directly binds to MLCK active site and competes with both ATP and 20,000 dalton light chain so as to inhibit the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号