共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor trafficking and synaptic plasticity 总被引:11,自引:0,他引:11
Long-term potentiation and long-term depression are processes that have been widely studied to understand the molecular basis of information storage in the brain. Glutamate receptors are required for the induction and expression of these forms of plasticity, and GABA (gamma-aminobutyric acid) receptors are involved in their modulation. Recent insights into how these receptors are rapidly moved into and out of synaptic membranes has profound implications for our understanding of the mechanisms of long-term potentiation and long-term depression. 相似文献
2.
J. A. P. Rostas J. M. Kavanagh P. R. Dodd J. W. Heath D. A. Powis 《Molecular neurobiology》1991,5(2-4):203-216
We have shown that the synapse maturation phase of synaptogenesis is a model for synaptic plasticity that can be particularly well-studied in chicken forebrain because for most forebrain synapses, the maturation changes occur slowly and are temporally well-separated from the synapse formation phase. We have used the synapse maturation phase of neuronal development in chicken forebrain to investigate the possible link between changes in the morphology and biochemical composition of the postsynaptic density (PSD) and the functional properties of glutamate receptors overlying the PSD. Morphometric studies of PSDs in forebrains and superior cervical ganglia of chickens and rats have shown that the morphological features of synapse maturation are characteristic of a synaptic type, but that the rate at which these changes occur can vary between types of synapses within one animal and between synapses of the same type in different species. We have investigated, during maturation in the chicken forebrain, the properties of the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptors, which are concentrated in the junctional membranes overlying thick PSDs in the adult. There was no change in the number of NMDA receptors during maturation, but there was an increase in the rate of NMDA-stimulated uptake of 45Ca2+ into brain prisms. This functional change was not seen with the other ionotropic subtypes of the glutamate receptor and was NMDA receptor-mediated. The functional change also correlated with the increase in thickness of the PSD during maturation that has previously been shown to be due to an increase in the amount of PSD associated Ca(2+)-calmodulin stimulated protein kinase II (CaM-PK II). Our results provide strong circumstantial evidence for the regulation of NMDA receptors by the PSD and implicate changing local concentrations of CaM-PK II in this process. The results also indicate some of the ways in which properties of existing synapses can be modified by changes at the molecular level. 相似文献
3.
Regulation of AMPA receptor trafficking and synaptic plasticity 总被引:1,自引:0,他引:1
AMPA receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the brain. Dynamic changes in neuronal synaptic efficacy, termed synaptic plasticity, are thought to underlie information coding and storage in learning and memory. One major mechanism that regulates synaptic strength involves the tightly regulated trafficking of AMPARs into and out of synapses. The life cycle of AMPARs from their biosynthesis, membrane trafficking, and synaptic targeting to their degradation are controlled by a series of orchestrated interactions with numerous intracellular regulatory proteins. Here we review recent progress made toward the understanding the regulation of AMPAR trafficking, focusing on the roles of several key intracellular AMPAR interacting proteins. 相似文献
4.
Esteban JA 《Molecular interventions》2003,3(7):375-385
Most excitatory transmission in the brain is mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPA receptors). Therefore, the presence of these receptors at synapses has to be carefully regulated in order to ensure correct neuronal communication. Interestingly, AMPA receptors are not static components of synapses. On the contrary, they are continuously being delivered and removed in and out of synapses in response to neuronal activity. This dynamic behavior of AMPA receptors is an important mechanism to modify synaptic strength during brain development and also during experience-dependent plasticity. AMPA receptor trafficking involves an intricate network of protein-protein interactions that start with the biosynthesis of the receptors, continues with their transport along dendrites, and ends with their local insertion and removal from synapses. The molecular and cellular mechanisms that regulate each of these processes, and their importance for synaptic plasticity, are now starting to be unraveled. 相似文献
5.
6.
The number and subunit composition of synaptic N-methyl-D-aspartate receptors (NMDARs) are not static, but change in a cell- and synapse-specific manner during development and in response to neuronal activity and sensory experience. Neuronal activity drives not only NMDAR synaptic targeting and incorporation, but also receptor retrieval, differential sorting into the endosomal-lysosomal pathway and lateral diffusion between synaptic and extrasynaptic sites. An emerging concept is that activity-dependent, bidirectional regulation of NMDAR trafficking provides a dynamic and potentially powerful mechanism for the regulation of synaptic efficacy and remodelling, which, if dysregulated, can contribute to neuropsychiatric disorders such as cocaine addiction, Alzheimer's disease and schizophrenia. 相似文献
7.
Bear MF 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2003,358(1432):649-655
Theories of receptive field plasticity and information storage make specific assumptions for how synapses are modified. I give a personal account of how testing the validity of these assumptions eventually led to a detailed understanding of long-term depression and metaplasticity in hippocampal area CA1 and the visual cortex. The knowledge of these molecular mechanisms now promises to reveal when and how sensory experience modifies synapses in the cerebral cortex. 相似文献
8.
Paasche JD Attramadal T Sandberg C Johansen HK Attramadal H 《The Journal of biological chemistry》2001,276(36):34041-34050
We recently reported that the endothelin (ET) receptor subtypes ET(A) and ET(B) are targeted to distinct intracellular destinations upon agonist stimulation (Bremnes, T., Paasche, J. D., Mehlum, A., Sandberg, C., Bremnes, B., and Attramadal, H. (2000) J. Biol. Chem. 275, 17596-17604). The ET(A) receptor was shown to follow the recycling route of transferrin, whereas ET(B) is targeted to lysosomes for degradation. In the present study we have investigated the mechanisms of ET receptor subtype-specific targeting to distinct intracellular trafficking pathways. Truncation mutants of the ET(A) and ET(B) receptors with deletions of the cytoplasmic carboxyl-terminal tail distal to the palmitoylation site were found to mediate inositol phosphate accumulation and to internalize upon agonist stimulation, although internalization occurred at a slower rate as compared with the wild-type receptors. However, the truncated ET(A) receptor was no longer able to undergo recycling. Rather, both truncation mutants were recognized by beta-arrestin for recruitment to endocytosis and were sorted to lysosomes by a dynamin-dependent internalization pathway. Furthermore, studies of chimeric ET(A) and ET(B) receptors where the cytoplasmic tail of ET(A) was swapped with the corresponding domain of ET(B), and vice versa, revealed that the cytoplasmic tail of ET(B) is required for efficient lysosomal sorting and that signals for targeting to recycling reside in the cytoplasmic tail of the ET(A) receptor. 相似文献
9.
Ras and Rap control AMPA receptor trafficking during synaptic plasticity 总被引:30,自引:0,他引:30
Recent studies show that AMPA receptor (-R) trafficking is important in synaptic plasticity. However, the signaling controlling this trafficking is poorly understood. Small GTPases have diverse neuronal functions and their perturbation is responsible for several mental disorders. Here, we examine the small GTPases Ras and Rap in the postsynaptic signaling underlying synaptic plasticity. We show that Ras relays the NMDA-R and CaMKII signaling that drives synaptic delivery of AMPA-Rs during long-term potentiation. In contrast, Rap mediates NMDA-R-dependent removal of synaptic AMPA-Rs that occurs during long-term depression. Ras and Rap exert their effects on AMPA-Rs that contain different subunit composition. Thus, Ras and Rap, whose activity can be controlled by postsynaptic enzymes, serve as independent regulators for potentiating and depressing central synapses. 相似文献
10.
11.
12.
Homeostatic synaptic plasticity remains an enigmatic form of synaptic plasticity. Increasing interest on the topic has fuelled a surge of recent studies that have identified key molecular players and the signaling pathways involved. However, the new findings also highlight our lack of knowledge concerning some of the basic properties of homeostatic synaptic plasticity. In this review we address how homeostatic mechanisms balance synaptic strengths between the presynaptic and the postsynaptic terminals and across synapses that share the same postsynaptic neuron. 相似文献
13.
A great deal of research has been directed toward understanding the cellular mechanisms underlying synaptic plasticity and memory formation. To this point, most research has focused on the more "active" components of synaptic transmission: presynaptic transmitter release and postsynaptic transmitter receptors. Little work has been done characterizing the role neurotransmitter transporters might play during changes in synaptic efficacy. We review several new experiments that demonstrate glutamate transporters are regulated during changes in the efficacy of glutamatergic synapses. This regulation occurred during long-term facilitation of the sensorimotor synapse of Aplysia and long-term potentiation of the Schaffer-collateral synapse of the rat. We propose that glutamate transporters are "co-regulated" with other molecules/processes involved in synaptic plasticity, and that this process is phylogenetically conserved. These new findings indicate that glutamate transporters most likely play a more active role in neurotransmission than previously believed. 相似文献
14.
15.
Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity 总被引:1,自引:0,他引:1
AMPA-type glutamate receptors (AMPARs) mediate most fast excitatory synaptic transmission in the mammalian brain. It is widely believed that the long-lasting, activity-dependent changes in synaptic strength, including long-term potentiation and long-term depression, could be the molecular and cellular basis of experience-dependent plasticities, such as learning and memory. Those changes of synaptic strength are directly related to AMPAR trafficking to and away from the synapse. There are many forms of synaptic plasticity in the mammalian brain, while the prototypic form, hippocampal CA1 long-term potentiation, has received the most intense investigation. After synthesis, AMPAR subunits undergo posttranslational modifications such as glycosylation, palmitoylation, phosphorylation and potential ubiquitination. In addition, AMPAR subunits spatiotemporally associate with specific neuronal proteins in the cell. Those posttranslational modifications and receptor-associated proteins play critical roles in AMPAR trafficking and regulation of AMPAR-dependent synaptic plasticity. Here, we summarize recent studies on posttranslational modifications and associated proteins of AMPAR subunits, and their roles in receptor trafficking and synaptic plasticity. 相似文献
16.
《Journal of structural biology》2022,214(1):107836
Protein transport between the membranous compartments of the eukaryotic cells is mediated by the constant fission and fusion of the membrane-bounded vesicles from a donor to an acceptor membrane. While there are many membrane remodelling complexes in eukaryotes, COPII, COPI, and clathrin-coated vesicles are the three principal classes of coat protein complexes that participate in vesicle trafficking in the endocytic and secretory pathways. These vesicle-coat proteins perform two key functions: deforming lipid bilayers into vesicles and encasing selective cargoes. The three trafficking complexes share some commonalities in their structural features but differ in their coat structures, mechanisms of cargo sorting, vesicle formation, and scission. While the structures of many of the proteins involved in vesicle formation have been determined in isolation by X-ray crystallography, elucidating the proteins' structures together with the membrane is better suited for cryogenic electron microscopy (cryo-EM). In recent years, advances in cryo-EM have led to solving the structures and mechanisms of several vesicle trafficking complexes and associated proteins. 相似文献
17.
18.
Cichon J Sun C Chen B Jiang M Chen XA Sun Y Wang Y Chen G 《The Journal of biological chemistry》2012,287(6):3919-3929
Cofilin is an actin-binding protein and a major actin depolymerization factor in the central nervous system (CNS). Cofilin-actin aggregates are associated with neurodegenerative disorders, but how cofilin-actin aggregation induces pathological effects in the CNS remains unclear. Here, we demonstrated that cofilin rods disrupted dendritic microtubule integrity in rat hippocampal cultures. Long term time-lapse imaging revealed that cofilin rods block intracellular trafficking of both mitochondria and early endosomes. Importantly, cofilin rod formation induced a significant loss of SV2 and PSD-95 puncta as well as dendritic spines. Cofilin rods also impaired local glutamate receptor responses. We discovered an inverse relationship between the number of synaptic events and the accumulation of cofilin rods in dendrites. We also detected cofilin rods in aging rat brains in vivo. These results suggest that cofilin aggregation may contribute to neurodegeneration and brain aging by blocking intracellular trafficking and inducing synaptic loss. 相似文献
19.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved post-translational modification in eukaryotes. GPI is synthesized and transferred to proteins in the endoplasmic reticulum. GPI-anchored proteins are then transported from the endoplasmic reticulum to the plasma membrane through the Golgi apparatus. GPI-anchor functions as a sorting signal for transport of GPI-anchored proteins in the secretory and endocytic pathways. After GPI attachment to proteins, the structure of the GPI-anchor is remodeled, which regulates the trafficking and localization of GPI-anchored proteins. Recently, genes required for GPI remodeling were identified in yeast and mammalian cells. Here, we describe the structural remodeling and function of GPI-anchors, and discuss how GPI-anchors regulate protein sorting, trafficking, and dynamics. This article is part of a Special Issue entitled Lipids and Vesicular Transport. 相似文献
20.
Addictive drugs have in common that they target the mesocorticolimbic dopamine (DA) system. This system originates in the ventral tegmental area (VTA) and projects mainly to the nucleus accumbens (NAc) and prefrontal cortex (PFC). Here, we review the effects that such drugs leave on glutamatergic and GABAergic synaptic transmission in these three brain areas. We refer to these changes as drug-evoked synaptic plasticity, which outlasts the presence of the drug in the brain and contributes to the reorganization of neural circuits. While in most cases these early changes are not sufficient to induce the disease, with repetitive drug exposure, they may add up and contribute to addictive behavior. 相似文献