首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ion relations of isolated mesophyll cells from Antirrhinumleaf tissue were compared with the corresponding propertiesof the freshly excised leaf tissue. Both systems showed activeinfluxes of K+ and Cl, and the permeabilities of thecells to K+ and to Cl were similar to those of the leaftissue. However, the contents of K+ and Cl in the isolatedcells were much less than in the leaf tissue, and the permeabilityof the cells to Na+ was much higher. The results suggested thatthe isolation procedure had some reversible effects on the transportproperties of the cells and also some irreversible effects.Comparison with other results suggested that the magnitudesof these effects depend on the species of plant being used.It was concluded that isolated mesophyll cells can be usefulin the study of the ion transport processes which occur in leaves,provided that certain precautions are taken in the isolationof the cells and in the conditions of their use.  相似文献   

2.
Concentrations of inorganic and organic solutes were measuredin sap extracted from individual mesophyll and epidermal cellsof the third leaf of barley. During the development of the thirdleaf plants were grown in various salt solutions (NaCl; 2, 50,100, and 150 mM, KCI; 100 mM or KNO3; 100 mM). Leaves were analysed2–4 d after full expansion. Cell-sap was extracted usinga modified pressure probe and analysed for its osmolality, concentrationsof P, Na+ K+ Ca2+, and Cl and, in some cases, of nitrate,hexoses and total amino acids. Salt treatment caused differentialchanges in the concentrations of solutes in mesophyll and epidermalcells, but did not affect the basic pattern of solute compartmentationbetween these tissues. Calcium was found at osmotically significantconcentrations only in the epidermis, whereas P and organicsolutes were almost exclusively found in the mesophyll. Chlorideand Na+ accumulated preferentially in the epidermis, althoughmesophyll concentrations also increased considerably. At 150mM external NaCl, mesophyll cells contained 302 mM Na and 167mM Cl, compared to 29 mM Na+ and 16 mM Cl in thecontrol. Mesophyll Cl levels were even higher in the100 mM KCl treatment (216 mM) where mesophyll and epidermalK+ accumulated to 424 and 491 mM, respectively. These huge increasesin mesophyll Na+ Cl and K+ were not associated with abreakdown in leaf performance since net rates of photosynthesisdecreased only by less than 20%. Under control (2 mM NaCl) conditions,solutes followed patterned gradients between the various epidermalcell types. The extent of these gradients changed with leafage. During 50 mM NaCl treatment, gradients in Cl, nitrateand malate concentrations progressively disappeared, with malateconcentrations approaching zero. Potassium and Na+ exhibitedaltered distribution profiles, whereas Ca2+ distribution wasunaffected. NaCl-dependent increases in osmolalities differedbetween cells. Exposure of plants to 150 mM NaCl caused qualitativelysimilar changes in both epidermal solute and osmolality profiles,although absolute values differed from those at 50 mM NaCl.In particular, epidermal Cl and Na+ increased to about500 mM and K+ disappeared (<<5 mM) from the vacuole ofcertain epidermal cell types completely. Key words: Barley leaf epidermis, mesophyll, salt stress, single-cell analysis, vacuolar solutes  相似文献   

3.
The distribution of ions within wheat leaf mesophyll cells fromplants grown in the presence of 100 mol m–3 NaCl werestudied by X-ray micro-analysis, and the volume fractions occupiedby the analysed compartments were determined stereologically.Generally, the cells did not accumulate high ion concentrationsin their vacuoles, and the much higher Na+ and Cl concentrationsin the cell walls would produce an imbalance of cell water relations.The Na+, K+ and Cl concentrations in the cytoplasm wereoften too high to be compatible with biochemical activity. Inresponse to saline growth conditions, the volume fractions occupiedby the cytoplasm and chloroplasts increased. Correspondence to: Institut für Botanik, Fachbereich Biologie,Technische Hochschule Darmstadt, 3–5 Schnittspahnstr.F.R.G. Key words: Salinity sensitivity, X-ray micro-analysis, stereology  相似文献   

4.
Commercially available cell wall-degrading enzymes frequentlyused for protoplast isolation inhibited CO2 fixation and photosyntheticO2 evolution, and stimulated dark respiration by leaf tissueand isolated mesophyll protoplasts of Nicotiana tabacum L. andAntirrhinum majus L. They also depolarized the membrane potentialof cells of leaf tissue, inhibited uptake of 86Rb by tobaccoleaf tissue and isolated mesophyll protoplasts, and stimulated36CI uptake by tobacco leaf tissue. Where studied, these effectswere found to be reversible. The depolarization effect on Antirrhinumleaf cells occurred even when the enzyme preparations had beendenatured, dialysed, or desalted, and the effect was greatestin those fractions of the enzyme preparation which showed thehighest cellulase activity. Plasmolysis of tobacco leaf tissue inhibited photosyntheticO2 evolution, CO2 fixation, and 86Rb uptake to levels belowthose exhibited by isolated protoplasts in media of the samecomposition and osmolarity. The implications of these resultsfor work with leaf tissue and isolated protoplasts are discussed.  相似文献   

5.
Characteristics of the vacuolar-type (V-type) H+-ATPase fromguard cell protoplasts of Commelina communis L. were investigatedusing a linked enzyme assay and nitrate inhibition as a diagnosticindicator of the enzyme activity. ATPase activity was completelyinhibited by about 50 mol m–3 nitrate and activity wasoptimal near pH 8.0. The temperature optimum for activity wasabout 37 C and an Arrhenius plot indicated changes in activationenergy for the ATPase at 15C and possibly at about 30 C. Theenzyme was stimulated by Cl while Ca2+ inhibited activity(l50 = 1.5 mol m–3). The apparent Km (MgATP) was 0.62mol m–3. Incubation of guard cell protoplasts for up to 5 h in 50 µMabscisic acid (ABA) or 25µM fusicoccin (FC) did not affectsubsequent ATPase activity. In vitro assays with FC or ABA alsodid not affect enzyme activity. Activity was not affected bylight or potassium ferricyanide, two factors which are knownto influence stomatal activity. Beticoline was a potent inhibitorof activity (l50 = 50 µM) while DCCD was less effective(l50 = 90µM). On chlorophyll, protein and protoplast bases, V-type ATPaseactivity was greater in guard cell protoplasts than mesophyllcell protoplasts by 66, 13.9 and 1.9, respectively. On atonoplast surface area basis the enzyme activity was 5.6 timeshigher in guard cell protoplasts than in mesophyll cell protoplasts Thus, although the characteristics of the V-type, H +-ATPaseof GCP are very similar to those found in other cell types,rates of activity and probably tonoplast enzyme density aremuch greater in guard cell protoplasts than mesophyll cell protoplastsof C. communis which corresponds with the large and rapid ionfluxes across the tonoplast associated with stomatal movements Key words: Guard cell protoplasts, stomata, V-type H +-ATPase  相似文献   

6.
Beetroot storage tissue that had been aged in an aerated solutionwas particularly suited for studies of solute losses duringanoxia;retention of betacyanin being a good indicator of tonoplastintegrity. During anoxia, loss of K+ was nearly always greater than thatof Na+ while Cl loss was intermediate. Supply of glucoseduringageing increased the tolerance of beetroot tissue to anoxia.In these tolerant tissues, there were three phases of soluteloss.During the first phase, losses of K+ and amino acids wererapid, presumably due to membrane depolarization from –156to –95 mV. In contrast, losses of Na+ and Cl wereslow. During the second phase, K+ loss had decreased to a lowrate, while losses of Na+ and Cl+ remained slow. Furthermore,the membrane potential remained at –95 to –90mV,which was consistent with the diffusion potential estimatedfrom the modified Goldman equation. In the third and final phase,loss of K+ Na+ Cl+,sugars, and amino acids began to increase,soon followed by loss of betacyanin. Tissues that had lost their betacyanin during anoxia were irreversiblyinjured, as shown by rapid uptake of Evans Blue and afailureto take up K+ , Na+ and Cl+ during re–aeration. In contrast,tissues which had retained their betacyanin did not take upEvansBlue, but took up substantial amounts of K+ , Na+ , and Clafter re–aeration. After return to air for 1.5 h, tissuethat hadretained its betacyanin had a membrane potential of– 154 mV. Key words: Anoxia, beetroot, solute, membrane potential  相似文献   

7.
Hordeum vulgare cv. California Mariout was established in sandculture at two different NaCl concentrations (0.5 mol m–3‘control’ and 100 mol m–3) in the presenceof 6.5 mol m–3 K +. Between 16 and 31 d after germination,before stem elongation started, xylem sap was collected by useof a pressure chamber. Collections were made at three differentsites on leaves 1 and 3: at the base of the sheath, at the baseof the blade, i.e. above the ligule, and at the tip of the blade.Phloem sap was collected from leaf 3 at similar sites throughaphid stylets. The concentrations of K +, Na+, Mg2+ and Ca2+were measured. Ion concentrations in xylem sap collected at the base of leaves1 and 3 were identical, indicating there was no preferentialdelivery of specific ions to older leaves. All ion concentrationsin the xylem decreased from the base of the leaf towards thetip; these gradients were remarkably steep for young leaves,indicating high rates of ion uptake from the xylem. The gradientsdecreased with leaf age, but did not disappear completely. In phloem sap, concentrations of K+ and total osmolality declinedslightly from the tip to the base of leaves of both controland salt-treated plants. By contrast, Na+ concentrations inphloem sap collected from salt-treated plants decreased drasticallyfrom 21 mol m–3 at the tip to 7.5 mol m–3 at thebase. Data of K/Na ratios in xylem and phloem sap were used to constructan empirical model of Na+ and K+ flows within xylem and phloemduring the life cycle of a leaf, indicating recirculation ofNa+ within the leaf. Key words: Hordeum vulgare, xylem transport, phloem transport, NaCl-stress  相似文献   

8.
Na+, K+ and Cl- in Xylem Sap Flowing to Shoots of NaCl-Treated Barley   总被引:7,自引:0,他引:7  
Munns, R. 1985. Na+, K+ and Cl in xylem sap flowing toshoots of NaCl-treated barley.—J. exp. Bot. 36: 1032–1042. Na+, Cl and K+ concentrations were measured in xylemsap obtained by applying pressure to the roots of decapitatedbarley plants grown at external [NaCl] of 0, 25, 50, 100, 150and 200 mol m–3. For any given NaCl treatment, ion concentrationsin the xylem sap were hyperbolically related to the flux ofwater. Ion concentrations in sap collected at very low volumefluxes (without applied pressure) were 5–10 times higherthan in sap collected at moderate fluxes (under pressure). Fora given moderate volume flux, Na+ concentration in the xylemsap, [Na+]x, was only 4.0 mol m–3 at external [NaCl] of25–150 mol m–3, and increased to 7.0 mol m–3at 200 mol m–3. [Cl-]x showed a similar pattern. Thisshows there would be little difference in the rate of uptaketo the shoot of plants at 25–150 mol m–3 externalNaCl and indicates little change even at 200 mol m-3 NaCl becausetranspiration rates would be much lower. Thus the reduced growthof the shoot of plants at high NaCl concentrations is not dueto higher uptake rates of Na+ or Cl. The fluxes of Na+, Cl and K increased non-linearlywith increasing volume flux indicating little movement of saltin the apoplast. The flux of K+ increased even when [K+]x wasgreater than external [K+], indicating that membrane transportprocesses modify the K+ concentration in the transpiration streamas it flows through the root system. Key words: -Xylem sap, Na+, K+, Cl fluxes, salinity, barley  相似文献   

9.
Bowman, W. D. 1988. Ionic and water relations responses of twopopulations of a non-halophyte to salinity.–J. exp. Bot39: 97–105 Salinity-induced changes in the ionic and water relations inplants from two naturally-occurring populations of the C4 non-halophyteAndropogon glomeratus were measured to detect differences inthe capacity to adjust osmotic potentials and in ion contentpotentially responsible for the osmotic adjustment Pressure-volumecurves and leaf ion content were measured in plants from twopopulations, salt marsh and inland, after long-term exposureto three salinity levels. Osmotic adjustment and decreases inthe bulk tissue elasticity occurred to a similar extent in bothpopulations with increasing salinity. Cl concentrationsincreased with increasing salinity in both populations, whereasleaf Na+ concentrations increased only in the inland population,but were higher at all salinities in the marsh population. K+concentrations changed little with increasing salinity. Prolineconcentrations increased only at the highest salinity level,and did not difler significantly between populations. Theseresults suggest a role for Na+ uptake and regulation in osmoticadjustment in the marsh population, contrasting with studiesof salt tolerance in other nonhalophytic grasses  相似文献   

10.
Non-selected and Na2SO-, K2SO4- or KCl-selected callus culturesof Vaccinium corymbosum L. cv. Blue Crop were grown on mediasupplemented with 0, 25 and 50 mM Na2SO4 (non-selected and Na2SO(-selectedonly), 0, 25 and 50mMK2SO4 (non-selected and K2SO4-selectedonly) or 0, 50 and 100 mM KCl (non-selected and KCl-selectedonly). On all media, growth of selected callus (on a fresh-weightor dry-weight basis) was greater than that of non-selected callus,and selected callus grew optimally on the level and type ofsalt on which it was selected. Selected callus was friable andmaintained a higher f. wt:d. wt ratio. Tissue water potentialin selected callus was more negative than in non-selected callus. Flame photometry and chloridometry showed Na+, K+ and Claccumulated in callus to concentrations equal to or greaterthan the initial concentration in the medium. Turbidometry showedthat tissue SO42- concentration was lower than the concentrationin the medium. In most cases selected callus accumulated moreNa+, Ksup, SO42– or Cl than non-selected callus.Vacuolar ion concentration was measured by electronprobe X-raymicroanalysis, and on most media selected callus had highervacuolar ion concentrations than non-selected callus. SO42–and Cl were accumulated in the vacuoles at concentrationshigher than the external medium, but vacuolar Na+ concentrationdid not reach external concentration on Na2SO4 and on potassiumsalts was maintained between 12 and 17 mM. Vacuolar K+ concentration(approx. 142–191 mM on no salt) decreased on Na2SO4 andincreased on K2SO4 and KCl. There was no precise correlation between total or specific ionaccumulation (Na+, K+, SO42– and Cl and fresh-weightyield. Results suggest that selection results in adaptationin response to decreased water potential of the medium. Vaccinium corymbosum, blueberry, electronprobe X-ray microanalysis, callus, in vitro selection, salt tolerance, KCl, K2SO4, Na2SO4  相似文献   

11.
Activity of glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase, EC 1.1.1.49 [EC] ) preparation from sweet potatoroot tissue was markedly altered in the presence of variousions. Cations or anions were effective in the following order:Na$, K$>Tris$>NH4$>Mg2$>Ca2$, or Cl>NO3,HPO42–>SO42–>HCO3. Activity was inhibitedat high concentrations of Ca2$, and HCO3,. In an investigationon the dependence of the activity on pH, two activity peakswere clearly observed at low ionic strength. Ionic strength altered both the Km and Vmax for glucose 6-phosphate(G6P). A Lineweaver-Burk plot for the enzyme, with respect toG6P, showed a bimodal nature at low ionic strength; suggestingnegative cooperativity. Deviation from linearity of the plotwas less with an increase in the ionic strength. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku, Tokyo 113. (Received September 18, 1971; )  相似文献   

12.
The effects of the synthetic auxin and herbicide 2,4-dichlorophenoxyaceticacid (2,4-D) on K$ and Cl uptake and H$ release by youngexcised maize roots has been studied. Brief exposure to 2,4-D(0.01 mmol dm–3) at pH 3.5 causes a large depolarizationof the electrical potential across the root plasma membranesand converts K$ uptake to K$ leakage into the bathing solution.These results can be explained by the increased H$ permeabilityof the membranes induced by the weak acid 2,4-D. The depolarizationresults in a less favourable electrochemical potential gradientfor K$ uptake across these membranes. These effects are notrelated to the auxin properties of 2,4-D as the nonauxin 3,5-dichlorophenoxyaceticacid (3,5-D) gives rise to similar effects. The relative depolarizationsinduced by a range of weak acids appear to be unrelated to theiroil/water partition coefficients. In contrast, on bathing the roots for longer periods in solutions(pH > 5) containing 2,4-D (0.01 mmol dm–3) K$ and Cluptake and H$ release are inhibited. These effects are not shownwith 3,5-D suggesting an auxin-linked action for 2,4-D. Alsothe electrical potential across the plasma membranes is onlyslightly depolarized so that a change in the electrochemicalpotential gradient cannot be invoked to explain the loweredion fluxes. The evidence is consistent with the removal of anenergy supply to a metabolically linked K/H exchangemechanism in the plasma membranes. It is likely that both modes of action would operate to lowerion uptake under soil-grown conditions, the former becomingmore manifest in acidic soils.  相似文献   

13.
SYNOPSIS. Cutaneous ion transport has long been studied forits role in osmotic and ionic regulation in amphibians. In additionto this role, it is becoming clear that cutaneous ion exchangeinfluences, and is influenced by, a number of other physiologicaland morphological factors. The exchange of Na$ and Clacross the skin of larval Ambystoma tigrinum is clearly involvedin acid-base balance. The animals require NaCl in their bathingmedia in order to compensate for a respiratory acidosis or torecover normally from a metabolic acidosis. Conversely, Na$influx is stimulated and Cl influx is inhibited duringhypercapnia. Cutaneous ion transport in larval A. tigrinum appearsto be at least partially influenced by cutaneous circulationas immersion in isosmotic media to reduce skin blood flow alsoslows Na$ influx. Allometric analysis of Na$ influx yieldeda slope of 0.52, which is significantly less than the slopepredicted for surface area. The lower slope for ion transportmay reflect changes in capillary recruitment, skin thicknessor distribution of ion transporters over the skin. In additionto the well known cutaneous ion transport of amphibians, a numberof fish and reptilian species have also been discovered to exchangeions across skin in ways which may have homeostatic consequences.  相似文献   

14.
Clint, G. M. 1985. The investigation of stomatal ionic relationsusing guard cell protoplasts. 1. Methodology.—J exp. Bot.36: 1726–1738. A study was made of the methodology for the production and useof guard cell protoplasts in ion transport studies, with particularemphasis placed on the effects of the composition of the externalmedium on protoplast survival and performance. Addition of externalKCl to media during the production of guard cell protoplastsfrom Commelina communis L. was found to improve viability andto increase K+ content and physiological competence of the isolatedprotoplasts. Addition of low levels (20 x 10–3 mol m–3)CaCl2 increased protoplast yield and the maintenance of viabilityin long-term incubation. Ambiguities and uncertainties werefound in the application of methods commonly used for the assessmentof viability of isolated protoplasts. Poor yields (despite highpercentage recoveries) together with difficulties in the assessmentof viability were considered to pose major potential problemsin the use of guard cell protoplasts in ion transport studies. Key words: Guard cell protoplasts, ion transport, Commelina communis  相似文献   

15.
Intact chloroplasts were isolated from mesophyll and bundlesheath protoplasts of a C4 plant, Panicum miliaceum L., to measurethe uptake of [1-14C]pyruvate into their sorbitol-impermeablespaces at 4?C by the silicone oil filtering centrifugation method.When incubated in the dark, both chloroplasts showed similarslow kinetics of pyruvate uptake, and the equilibrium internalconcentrations were almost equal to the external levels. Whenincubated in the light, only mesophyll chloroplasts showed remarkableenhancement of the uptake, the internal concentration reaching10–30 times of the external level after 5 min incubation.The initial uptake rate of the mesophyll chloroplasts was enhancedabout ten fold by light and was saturated with increasing pyruvateconcentration; Km and Vmax were 0.2–0.4 mM and 20–40µmol(mg Chl)–1 h–1, respectively. The lightenhancement was abolished by DCMU and uncoupling reagents suchas carbonylcyanide-m-chlorophenylhydrazone and nigericin. Theseresults indicate the existence of a light-dependent pyruvatetransport system in the envelope of mesophyll chloroplasts ofP. miliaceum. The uptake activity of mesophyll chloroplastsboth in the light and the dark was inhibited by sulfhydryl reagentssuch as mersalyl and p-chloromercuriphenylsulfonate, but thebundle sheath activity was insensitive to the reagents. Thesefindings are further evidence for the differentiation of mesophylland bundle sheath chloroplasts of a C4 plant with respect tometabolite transport. (Received July 3, 1986; Accepted October 8, 1986)  相似文献   

16.
The Ionic Relations of Acetabularia mediterranea   总被引:3,自引:0,他引:3  
The concentrations of K+, Na+, and Cl in the cytoplasmand the vacuole of Acetabularia mediterranea have been measured,as have the vacuolar concentrations of SO4–– andoxalate. The electrical potential difference between externalsolution, and vacuole and cytoplasm has been measured. The resultsindicate that Cl and SO4–– are probably transportedactively into the cell, and that active transport of Na+ isoutwards. The results for K+ are equivocal. The fluxes of K+,Na+, Cl, and S04–– into the cell and theeffluxes of Na+ and Cl have been determined. The Clfluxes are extremely large. In all cases the plasmalemma isthe rate-limiting membrane for ion movement. A technique isdescribed for the preparation of large, completely viable cellfragments containing only cytoplasm, with no vacuole.  相似文献   

17.
The anatomical structure of the second leaf blade of barley{Hordeum vulgare L. cv. Koral) was studied in plants exposedto a photosynthetic photon flux density (PPFD) of 200 µmolm–2 s–1 compared with those grown under 25µmolm–2–11. Design-based stereological methods wereused for the estimation of various leaf anatomical characteristicssuch as mesophyll volume, proportion of intercellular spaces,number of mesophyll cells, mean mesophyll cell volume, and internalleaf surface area. The structure of the mesophyll was more affectedby different levels of PPFD than were the stomatal characteristics.Increased PPFD produced thicker leaves with a larger mesophyllvolume having a higher number of less elongated mesophyll cellsand a larger internal leaf surface area. Key words: Hordeum vulgare, light effect, mesophyll, stereology, stomata  相似文献   

18.
The role of carbonic anhydrase (CA) in ion transport processesof aquatic and terrestrial arthropod species is reviewed. Inboth insects and crustaceans CA is found in a variety of iontransporting tissues. The bulk of CA activity in crustaceansis concentrated in the posterior gills, which are morphologicallyand biochemically adapted for ion transport. The enzyme canbe specifically localized to gill lamellae which contain largepopulations of salt transporting chloride cells. Enzyme activityin the posterior gills of species having the ability to regulateblood ion concentrations increases when these organisms areacclimated to environmental salinities in which they ion regulate.In stenohaline, ion conforming species branchial CA activityis uniformly low, being only 5–10% that in regulatingspecies. Studies on the blue crab, Callinectes sapidus, usingthe specific CA inhibitor acetazolamide have shown that theenzyme is indeed important in blood ion regulation. Blood Na$and Cl concentrations are both severely lowered in drug-treatedanimals acclimated to low salinity, while they remain virtuallyunaffected in animals acclimated to high salinity, in whichthe animal is an ion conformer. High salinity acclimated crabstreated with acetazolamide do not survive transfer to low salinity,and mortality is related to a breakdown in the ion regulatorymechanism. Branchial CA most likely functions in the hydrationof respiratory CO2 to H$ and HCO3, which serve as counterionsfor the active uptake of Na$ and Cl, respectively. Interrestrial species the role of CA is unclear and merits furtherinvestigation.  相似文献   

19.
JUNG  K.-D.; BALL  E.; LUTTGE  U. 《Annals of botany》1980,45(3):351-356
The amino acid analog p-fluorophenylalanine (FPA) inhibitedsugar and K+ secretion by nectary glands. FPA specifically reducedthe net excretion of Na+ and Cl by the salt glands ofthe halophyte Limonium vulgare and 36Clexcretion by theglands of the pitcher walls of the carnivorous plant Nepenthes.Net uptake and net accumulation of Na+ and Cl by Limoniumleaf tissue and 36Cl accumulation in Nepenthes pitchertissue were much less inhibited than excretion. The resultsare discussed in relation to literature reporting similar specificeffects of FPA on transport of ions from the symplast of barleyroots into the dead xylem elements. Limonium vulgare, Nepenthes hookeriana, salt-glands, excretion, p-fluorophenylalanine  相似文献   

20.
Inhibition of photosynthesis by Na2SO3 in mesophyll protoplastsisolated from Vicia faba leaves and uptake of sulfite by theprotoplasts were examined at various pH values of the incubationmedium containing Na2SO3. As the pH of the incubation mediumlowered, the rate of photosynthesis in the protoplasts decreasedand the amount of sulfite taken up by the protoplasts increased.Most of sulfite accumulated in the protoplasts was not metabolizedduring the dark incubation, as measured with an ion chromatograph.Photosynthetic O2 evolution by the chloroplasts isolated fromVicia mesophyll protoplasts was inhibited by exogenously-appliedNa2SO3 over pH region examined (7.4–9.0). The sulfiteconcentration required for a half inhibition of photosynthesisby the isolated chloroplasts was similar to the intracellularsulfite level required for that by the protoplasts. These resultsindicate that the intracellular sulfite accumulated in the protoplastsin an unmetabolized state is responsible for the inhibitionof protoplast photosynthesis. (Received January 24, 1985; Accepted May 29, 1985)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号