首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction with the CD4 receptor enhances the exposure on the human immunodeficiency type 1 gp120 exterior envelope glycoprotein of conserved, conformation-dependent epitopes recognized by the 17b and 48d neutralizing monoclonal antibodies. The 17b and 48d antibodies compete with anti-CD4 binding antibodies such as 15e or 21h, which recognize discontinuous gp120 sequences near the CD4 binding region. To characterize the 17b and 48d epitopes, a panel of human immunodeficiency virus type 1 gp120 mutants was tested for recognition by these antibodies in the absence or presence of soluble CD4. Single amino acid changes in five discontinuous, conserved, and generally hydrophobic regions of the gp120 glycoprotein resulted in decreased recognition and neutralization by the 17b and 48d antibodies. Some of these regions overlap those previously shown to be important for binding of the 15e and 21h antibodies or for CD4 binding. These results suggest that discontinuous, conserved epitopes proximal to the binding sites for both CD4 and anti-CD4 binding antibodies become better exposed upon CD4 binding and can serve as targets for neutralizing antibodies.  相似文献   

2.
Human immunodeficiency virus (HIV) and simian (SIV) immunodeficiency virus entry is mediated by binding of the viral envelope glycoprotein (Env) to CD4 and chemokine receptors, CCR5 and/or CXCR4. CD4 induces extensive conformational changes that expose and/or induce formation of a chemokine receptor binding site on gp120. CD4-independent Env's of HIV type 1 (HIV-1), HIV-2, and SIV have been identified that exhibit exposed chemokine receptor binding sites and can bind directly to CCR5 or CXCR4 in the absence of CD4. While many studies have examined determinants for gp120-CCR5 binding, analysis of gp120-CXCR4 binding has been hindered by the apparently lower affinity of this interaction for X4-tropic HIV-1 isolates. We show here that gp120 proteins from two CD4-independent HIV-2 Env's, VCP and ROD/B, bind directly to CXCR4 with an apparently high affinity. By use of CXCR4 N-terminal deletion constructs, CXCR4-CXCR2 chimeras, and human-rat CXCR4 chimeras, binding determinants were shown to reside in the amino (N) terminus, extracellular loop 2 (ECL2), and ECL3. Alanine-scanning mutagenesis of charged residues, tyrosines, and phenylalanines in extracellular CXCR4 domains implicated multiple amino acids in the N terminus (E14/E15, D20, Y21, and D22), ECL2 (D187, R188, F189, Y190, and D193), and ECL3 (D262, E268, E277, and E282) in binding, although minor differences were noted between VCP and ROD/B. However, mutations in CXCR4 that markedly reduced binding did not necessarily hinder cell-cell fusion by VCP or ROD/B, especially in the presence of CD4. These gp120 proteins will be useful in dissecting determinants for CXCR4 binding and Env triggering and in evaluating pharmacologic inhibitors of the gp120-CXCR4 interaction.  相似文献   

3.
The external domain of the envelope glycoprotein, gp120, of simian immunodeficiency virus (SIV) has been expressed as a mature secreted product using recombinant baculoviruses and the expressed protein, which has an observed molecular mass of 110 kDa, was purified by monoclonal antibody (MAb) affinity chromatography. N-terminal sequence analysis showed a signal sequence cleavage identity similar to that of the gp120s of both human immunodeficiency virus type 1 (HIV-1) and HIV type 2. The expressed molecule bound to soluble CD4 with an affinity that was approximately 10-fold lower than that of gp120 from HIV-1. A screening of the ability of SIV envelope MAbs to inhibit CD4 binding revealed two groups of inhibitory MAbs. One group is dependent on conformation, while the second group maps to a discrete epitope near the amino terminus. The particular role of the V3 loop region of the molecule in CD4 binding was investigated by the construction of an SIV-HIV hybrid in which the V3 loop of SIV was precisely replaced with the equivalent domain from HIV-1 MN. The hybrid glycoprotein bound HIV-1 V3 loop MAbs and not SIV V3 MAbs but continued to bind conformational SIV MAbs and soluble CD4 as well as the parent molecule.  相似文献   

4.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior glycoprotein is conformationally flexible. Upon binding the host cell receptor, CD4, gp120 assumes a conformation that is able to bind the chemokine receptors CCR5 or CXCR4, which act as coreceptors for the virus. CD4-binding-site (CD4BS) antibodies are neutralizing antibodies elicited during natural infection that are directed against gp120 epitopes that overlap the binding site for CD4. Recent studies (S. H. Xiang et al., J. Virol. 76:9888-9899, 2002) suggest that CD4BS antibodies recognize conformations of gp120 distinct from the CD4-bound conformation. This predicts that the binding of CD4BS antibodies will inhibit chemokine receptor binding. Here, we show that Fab fragments and complete immunoglobulin molecules of CD4BS antibodies inhibit CD4-independent gp120 binding to CCR5 and cell-cell fusion mediated by CD4-independent HIV-1 envelope glycoproteins. These results are consistent with a model in which the binding of CD4BS antibodies limits the ability of gp120 to assume a conformation required for coreceptor binding.  相似文献   

5.
Yuan W  Craig S  Si Z  Farzan M  Sodroski J 《Journal of virology》2004,78(10):5448-5457
The synthetic peptide T-20, which corresponds to a sequence within the C-terminal heptad repeat region (HR2) of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope glycoprotein, potently inhibits viral membrane fusion and entry. Although T-20 is thought to bind the N-terminal heptad repeat region (HR1) of gp41 and interfere with gp41 conformational changes required for membrane fusion, coreceptor specificity determined by the V3 loop of gp120 strongly influences the sensitivity of HIV-1 variants to T-20. Here, we show that T-20 binds to the gp120 glycoproteins of HIV-1 isolates that utilize CXCR4 as a coreceptor in a manner determined by the sequences of the gp120 V3 loop. T-20 binding to gp120 was enhanced in the presence of soluble CD4. Analysis of T-20 binding to gp120 mutants with variable loop deletions and the reciprocal competition of T-20 and particular anti-gp120 antibodies suggested that T-20 interacts with a gp120 region near the base of the V3 loop. Consistent with the involvement of this region in coreceptor binding, T-20 was able to block the interaction of gp120-CD4 complexes with the CXCR4 coreceptor. These results help to explain the increased sensitivity of CXCR4-specific HIV-1 isolates to the T-20 peptide. Interactions between the gp41 HR2 region and coreceptor-binding regions of gp120 may also play a role in the function of the HIV-1 envelope glycoproteins.  相似文献   

6.
Hong PW  Nguyen S  Young S  Su SV  Lee B 《Journal of virology》2007,81(15):8325-8336
Human immunodeficiency virus type 1 (HIV-1) envelope (gp120) binding to DC-SIGN, a C-type lectin that can facilitate HIV infection in cis and in trans, is largely dependent on high-mannose-content moieties. Here, we delineate the N-linked glycosylation (N-glycan) sites in gp120 that contribute to optimal DC-SIGN binding. Soluble DC-SIGN was able to block 2G12 binding to gp120, but not vice versa, suggesting that DC-SIGN binds to a more flexible combination of N-glycans than 2G12. Consistent with this observation, HIV strain JRCSF gp120 prebound to 2G12 was 10-fold more sensitive to mannan competition than gp120 that was not prebound in a DC-SIGN cell surface binding assay. The analysis of multiple mutant forms of the 2G12 epitope revealed one triple glycosylation mutant form, termed 134mut (carrying N293Q, N382Q, and N388Q mutations), that exhibited a significant increase in sensitivity to both mannan competition and endoglycosidase H digestion compared to that of the 124mut form (carrying N293Q, N328Q, and N388Q mutations) and wild-type gp120 in a DC-SIGN binding assay. Importantly, no such differences were observed when binding to Galanthus nivalis was assessed. The 134mut form of gp120 also exhibited decreased binding to DC-SIGN in the context of native envelope spikes on a virion, and virus bearing 134mut exhibited less efficient DC-SIGN-mediated infection in trans. Significantly, 124mut and 134mut differed by only one glycosylation site mutation in each construct, and both 124mut and 134mut viruses exhibited wild-type levels of infectivity when used in a direct infection assay. In summary, while DC-SIGN can bind to a flexible combination of N-glycans on gp120, its optimal binding site overlaps with specific N-glycans within the 2G12 epitope. Conformationally intact envelopes that are DC-SIGN binding deficient can be used to probe the in vivo biological functions of DC-SIGN.  相似文献   

7.
The binding of the CD4 receptor by the human immunodeficiency virus type 1 gp120 exterior envelope glycoprotein is important for virus entry and cytopathic effect. To investigate the CD4-binding region of the gp120 glycoprotein, we altered gp120 amino acids, excluding cysteines, that are conserved among the primate immunodeficiency viruses utilizing the CD4 receptor. Changes in two hydrophobic regions (Thr-257 in conserved region 2 and Trp-427 in conserved region 4) and two hydrophilic regions (Asp-368 and Glu-370 in conserved region 3 and Asp-457 in conserved region 4) resulted in significant reductions in CD4 binding. For most of the mutations affecting these residues, the observed effects on CD4 binding did not apparently result from global conformational disruption of the gp120 molecule, as assessed by measurements of precursor processing, subunit association, and monoclonal antibody recognition. The two hydrophilic regions exhibit a strong propensity for beta-turn formation, are predicted to act as efficient B-cell epitopes, and are located adjacent to hypervariable, glycosylated regions. This study defines a small number of gp120 residues important for CD4 binding, some of which might constitute attractive targets for immunologic intervention.  相似文献   

8.
Monoclonal antibodies have been isolated from human immunodeficiency virus type 1 (HIV-1)-infected patients that recognize discontinuous epitopes on the gp120 envelope glycoprotein, that block gp120 interaction with the CD4 receptor, and that neutralize a variety of HIV-1 isolates. Using a panel of HIV-1 gp120 mutants, we identified amino acids important for precipitation of the gp120 glycoprotein by three different monoclonal antibodies with these properties. These amino acids are located within seven discontinuous, conserved regions of the gp120 glycoprotein, four of which overlap those regions previously shown to be important for CD4 recognition. The pattern of sensitivity to amino acid change in these seven regions differed for each antibody and also differed from that of the CD4 glycoprotein. These results indicate that the CD4 receptor and this group of broadly neutralizing antibodies recognize distinct but overlapping gp120 determinants.  相似文献   

9.
Many regions within the envelope of human immunodeficiency virus type 1 (HIV-1) that affect its structure and function have been identified. We have previously reported that the interaction of the second conserved (C2) and third variable (V3) regions of gp120 influences the ability of HIV-1 to establish a productive infection in susceptible cells. To better understand the basis for this interaction, we have conducted structure-function analyses of envelope expressed from molecular proviral clones of HIV-1 containing defined mutations in C2 and V3 that individually and in combination differentially affect envelope function. The substitution of a glutamine for an asparagine residue (Q-267) at a potential asparagine-linked glycosylation site in C2, which severely impairs virus infectivity, reduces intracellular processing of gp160 into gp120, the association of gp120 with virions, and the ability of gp120 to bind to the HIV-1 cell surface receptor protein, CD4. The change of an arginine to an isoleucine codon in V3 (I-308), in the presence of the Q-267 mutation, restores virus infectivity to near wild-type levels by increasing the amount of gp120 associated with virions as compared with the Q-267 mutant but does not compensate for the Q-267-induced processing defect. The I-308 change in the context of the wild-type HIV-1 has no affect on processing, association, or CD4 binding. These results indicate that the impaired infectivity of the Q-267 mutant virus is due to a marked reduction in the amount of virion gp120 and suggest that the interaction of C2 and V3 stabilizes the association of gp120 with gp41.  相似文献   

10.
Neutralizing antibodies that recognize the human immunodeficiency virus gp120 exterior envelope glycoprotein and are directed against either the third variable (V3) loop or conserved, discontinuous epitopes overlapping the CD4 binding region have been described. Here we report several observations that suggest a structural relationship between the V3 loop and amino acids in the fourth conserved (C4) gp120 region that constitute part of the CD4 binding site and the conserved neutralization epitopes. Treatment of the gp120 glycoprotein with ionic detergents resulted in a V3 loop-dependent masking of both linear C4 epitopes and discontinuous neutralization epitopes overlapping the CD4 binding site. Increased recognition of the native gp120 glycoprotein by an anti-V3 loop monoclonal antibody, 9284, resulted from from single amino acid changes either in the base of the V3 loop or in the gp120 C4 region. These amino acid changes also resulted in increased exposure of conserved epitopes overlapping the CD4 binding region. The replication-competent subset of these mutants exhibited increased sensitivity to neutralization by antibody 9284 and anti-CD4 binding site antibodies. The implied relationship of the V3 loop, which mediates post-receptor binding steps in virus entry, and components of the CD4 binding region may be important for the interaction of these functional gp120 domains and for the observed cooperativity of neutralizing antibodies directed against these regions.  相似文献   

11.
Anti-human immunodeficiency virus type 1 (HIV-1) antibodies whose binding to gp120 is enhanced by CD4 binding (CD4i antibodies) are generally considered nonneutralizing for primary HIV-1 isolates. However, a novel CD4i-specific Fab fragment, X5, has recently been found to neutralize a wide range of primary isolates. To investigate the precise nature of the extraordinary neutralizing ability of Fab X5, we evaluated the abilities of different forms (immunoglobulin G [IgG], Fab, and single-chain Fv) of X5 and other CD4i monoclonal antibodies to neutralize a range of primary HIV-1 isolates. Our results show that, for a number of isolates, the size of the neutralizing agent is inversely correlated with its ability to neutralize. Thus, the poor ability of CD4i-specific antibodies to neutralize primary isolates is due, at least in part, to steric factors that limit antibody access to the gp120 epitopes. Studies of temperature-regulated neutralization or fusion-arrested intermediates suggest that the steric effects are important in limiting the binding of IgG to the viral envelope glycoproteins after HIV-1 has engaged CD4 on the target cell membrane. The results identify hurdles in using CD4i epitopes as targets for antibody-mediated neutralization in vaccine design but also indicate that the CD4i regions could be efficiently targeted by small molecule entry inhibitors.  相似文献   

12.
Y Li  L Luo  N Rasool    C Y Kang 《Journal of virology》1993,67(1):584-588
Conflicting results have been reported regarding the role of carbohydrate on human immunodeficiency virus (HIV) envelope glycoprotein gp120 in CD4 receptor binding. Glycosylated, deglycosylated, and nonglycosylated forms of HIV type 1 (HIV-1) and HIV-2 gp120s were used to examine CD4 receptor-binding activity. Nonglycosylated forms of gp120 generated either by deletion of the signal sequence of HIV-1 gp120 or by synthesis in the presence of tunicamycin failed to bind to CD4. In contrast, highly mannosylated gp120 bound to soluble CD4 molecules well. Enzymatic removal of carbohydrate chains from glycosylated gp120 by endoglycosidase H or an endoglycosidase F/N glycanase mixture had no effect on the ability of gp120 to bind CD4. An experiment which measured the ability of gp120 to bind to CD4 as an assay of the proper conformation of gp120 showed that carbohydrate chains on gp120 are not required for the interaction between gp120 and CD4 but that N-linked glycosylation is essential for generation of the proper conformation of gp120 to provide a CD4-binding site.  相似文献   

13.
Feline immunodeficiency virus (FIV) shares with T-cell tropic strains of human immunodeficiency virus type 1 (HIV-1) the use of the chemokine receptor CXCR4 for cellular entry. In order to map the interaction of the FIV envelope surface unit (SU) with CXCR4, full-length FIV SU-Fc as well as constructs with deletions of extended loop L2, V3, V4, or V5 were produced in stable CHO cell lines. Binding studies were performed using these proteins on 3201 cells (CXCR4(hi) CD134(-)), with or without the CXCR4 inhibitor AMD3100. The findings established that SU binding to CXCR4 specifically requires the V3 region of SU. Synthetic peptides spanning the V3 region as well as a panel of monoclonal antibodies (MAbs) to SU were used to further map the site of CXCR4 interaction. Both the SU V3-specific antibodies and the full-length V3 peptide potently blocked binding of SU to CXCR4 and virus entry. By using a set of nested peptides overlapping a region of SU specifically recognized by CD134-dependent neutralizing V3 MAbs, we showed that the neutralizing epitope and the region required for CXCR4 binding are within the same contiguous nine-amino-acid sequence of V3. Site-directed mutagenesis was used to reveal that serine 393 and tryptophan 394 at the predicted tip of V3 are required to facilitate entry into the target cell via CXCR4. Although the amino acid sequences are not identical between FIV and HIV, the ability of FIV to bind and utilize both feline and human CXCR4 makes the feline model an attractive venue for development of broad-based entry antagonists.  相似文献   

14.
Cell-mediated immunity depends in part on appropriate migration and localization of cytotoxic T lymphocytes (CTL), a process regulated by chemokines and adhesion molecules. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode chemotactically active proteins, suggesting that dysregulation of immune cell trafficking may be a strategy for immune evasion. HIV-1 gp120, a retroviral envelope protein, has been shown to act as a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. We have previously shown that T cells move away from the chemokine stromal cell-derived factor 1 (SDF-1) in a concentration-dependent and CXCR4 receptor-mediated manner. Here, we demonstrate that CXCR4-binding HIV-1 X4 gp120 causes the movement of T cells, including HIV-specific CTL, away from high concentrations of the viral protein. This migratory response is CD4 independent and inhibited by anti-CXCR4 antibodies and pertussis toxin. Additionally, the expression of X4 gp120 by target cells reduces CTL efficacy in an in vitro system designed to account for the effect of cell migration on the ability of CTL to kill their target cells. Recombinant X4 gp120 also significantly reduced antigen-specific T-cell infiltration at a site of antigen challenge in vivo. The repellant activity of HIV-1 gp120 on immune cells in vitro and in vivo was shown to be dependent on the V2 and V3 loops of HIV-1 gp120. These data suggest that the active movement of T cells away from CXCR4-binding HIV-1 gp120, which we previously termed fugetaxis, may provide a novel mechanism by which HIV-1 evades challenge by immune effector cells in vivo.  相似文献   

15.
Host cell range, or tropism, combined with coreceptor usage defines viral phenotypes as macrophage tropic using CCR5 (M-R5), T-cell-line tropic using CXCR4 (T-X4), or dually lymphocyte and macrophage tropic using CXCR4 alone or in combination with CCR5 (D-X4 or D-R5X4). Although envelope gp120 V3 is necessary and sufficient for M-R5 and T-X4 phenotypes, the clarity of V3 as a dominant phenotypic determinant diminishes in the case of dualtropic viruses. We evaluated D-X4 phenotype, pathogenesis, and emergence of D-X4 viruses in vivo and mapped genetic determinants in gp120 that mediate use of CXCR4 on macrophages ex vivo. Viral quasispecies with D-X4 phenotypes were associated significantly with advanced CD4+-T-cell attrition and commingled with M-R5 or T-X4 viruses in postmortem thymic tissue and peripheral blood. A D-X4 phenotype required complex discontinuous genetic determinants in gp120, including charged and uncharged amino acids in V3, the V5 hypervariable domain, and novel V1/V2 regions distinct from prototypic M-R5 or T-X4 viruses. The D-X4 phenotype was associated with efficient use of CXCR4 and CD4 for fusion and entry but unrelated to levels of virion-associated gp120, indicating that gp120 conformation contributes to cell-specific tropism. The D-X4 phenotype describes a complex and heterogeneous class of envelopes that accumulate multiple amino acid changes along an evolutionary continuum. Unique gp120 determinants required for the use of CXCR4 on macrophages, in contrast to cells of lymphocytic lineage, can provide targets for development of novel strategies to block emergence of X4 quasispecies of human immunodeficiency virus type 1.  相似文献   

16.
The human immunodeficiency virus envelope glycoproteins, gp120 and gp41, function in cell entry by binding to CD4 and a chemokine receptor on the cell surface and orchestrating the direct fusion of the viral and target cell membranes. On the virion surface, three gp120 molecules associate noncovalently with the ectodomain of the gp41 trimer to form the envelope oligomer. Although an atomic-level structure of a monomeric gp120 core has been determined, the structure of the oligomer is unknown. Here, the orientation of gp120 in the oligomer is modeled by using quantifiable criteria of carbohydrate exposure, occlusion of conserved residues, and steric considerations with regard to the binding of the neutralizing antibody 17b. Applying similar modeling techniques to influenza virus hemagglutinin suggests a rotational accuracy for the oriented gp120 of better than 10 degrees. The model shows that CD4 binds obliquely, such that multiple CD4 molecules bound to the same oligomer have their membrane-spanning portions separated by at least 190 A. The chemokine receptor, in contrast, binds to a sterically restricted surface close to the trimer axis. Electrostatic analyses reveal a basic region which faces away from the virus, toward the target cell membrane, and is conserved on core gp120. The electrostatic potentials of this region are strongly influenced by the overall charge, but not the precise structure, of the third variable (V3) loop. This dependence on charge and not structure may make electrostatic interactions between this basic region and the cell difficult to target therapeutically and may also provide a means of viral escape from immune system surveillance.  相似文献   

17.
Mutant gp120 glycoproteins exhibiting a range of affinities for CD4 were tested for ability to form syncytia and to complement an env-defective provirus for replication. Surprisingly, gp120 mutants that efficiently induced syncytia and/or complemented virus replication were identified that exhibited marked (up to 50-fold) reductions in CD4-binding ability. Temperature-dependent changes in gp120, which result in a seven- to ninefold increase in affinity for CD4, were shown not to be necessary for subsequent membrane fusion or virus entry events. Mutant glycoproteins demonstrating even relatively small decreases in CD4-binding ability exhibited reduced sensitivity to soluble CD4. The considerable range of CD4-binding affinities tolerated by replication-competent HIV-1 variants has important implications for antiviral strategies directed at the gp120-CD4 interaction.  相似文献   

18.
Human immunodeficiency virus (HIV)-specific CD4 T-cell responses, particularly to the envelope glycoproteins of the virus, are weak or absent in most HIV-infected patients. Although these poor responses can be attributed simply to the destruction of the specific CD4 T cells by the virus, other factors also appear to contribute to the suppression of these virus-specific responses. We previously showed that human monoclonal antibodies (MAbs) specific for the CD4 binding domain of gp120 (gp120(CD4BD)), when complexed with gp120, inhibited the proliferative responses of gp120-specific CD4 T-cells. MAbs to other gp120 epitopes did not exhibit this activity. The present study investigated the inhibitory mechanisms of the anti-gp120(CD4BD) MAbs. The anti-gp120(CD4BD) MAbs complexed with gp120 suppressed gamma interferon production as well as proliferation of gp120-specific CD4 T cells. Notably, the T-cell responses to gp120 were inhibited only when the MAbs were added to antigen-presenting cells (APCs) during antigen pulse; the addition of the MAbs after pulsing caused no inhibition. However, the anti-gp120(CD4BD) MAbs by themselves, or as MAb/gp120 complexes, did not affect the presentation of gp120-derived peptides by the APCs to T cells. These MAb/gp120 complexes also did not inhibit the ability of APCs to process and present unrelated antigens. To test whether the suppressive effect of anti-gp120(CD4BD) antibodies is caused by the antibodies' ability to block gp120-CD4 interaction, APCs were treated during antigen pulse with anti-CD4 MAbs. These treated APCs remained capable of presenting gp120 to the T cells. These results suggest that anti-gp120(CD4BD) Abs inhibit gp120 presentation by altering the uptake and/or processing of gp120 by the APCs but their inhibitory activity is not due to blocking of gp120 attachment to CD4 on the surface of APCs.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

20.
The core of the gp120 glycoprotein from human immunodeficiency virus type 1 (HIV-1) is comprised of three major structural domains: the outer domain, the inner domain, and the bridging sheet. The outer domain is exposed on the HIV-1 envelope glycoprotein trimer and contains binding surfaces for neutralizing antibodies such as 2G12, immunoglobulin G1b12, and anti-V3 antibodies. We expressed the outer domain of HIV-1(YU2) gp120 as an independent protein, termed OD1. OD1 efficiently bound 2G12 and a large number of anti-V3 antibodies, indicating its structural integrity. Immunochemical studies with OD1 indicated that antibody responses against the outer domain of the HIV-1 gp120 envelope glycoprotein are rare in HIV-1-infected human sera that potently neutralize the virus. Surprisingly, such outer-domain-directed antibody responses are commonly elicited by immunization with recombinant monomeric gp120. Immunization with soluble, stabilized HIV-1 envelope glycoprotein trimers elicited antibody responses that more closely resembled those in the sera of HIV-1-infected individuals. These results underscore the qualitatively different humoral immune responses elicited during natural infection and after gp120 vaccination and help to explain the failure of gp120 as an effective vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号