首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miscanthus species, which are C4perennial grasses, have a highbiomass potential but yields at many sites in Europe can belimited by insufficient water supply and plant survival is endangeredunder extreme summer drought. A pot experiment was conductedto measure the influence of reduced water supply on the wateruse efficiency (WUE) and biomass partitioning of three Miscanthusgenotypes (M. x giganteus, M. sacchariflorus, and a M. sinensishybrid) in a controlled environment. The experiment consistedof three phases (phase 1 = 0–20 d; phase 2 = 21–39d; phase 3 = 40–54 d) punctuated by destructive harvests.In phase 1, soil moisture was non-limiting. In the second andthird phases, lowered soil moisture contents induced water deficits.Air vapour pressure deficit (VPD) was 0.49 ± 0.05 kPa.Water deficits caused leaf senescence in M. x giganteus andM. sacchariflorus, but not in the M. sinensis hybrid. Greenleaf conductances were lowest in M. sinensis under water deficit,indicating stomatal regulation. Water use efficiency for wholeplants of each genotype ranged from 11.5 to 14.2 g dry matter(DM) kg-1H2O but did not differ significantly between genotypesor water treatments under the conditions of this experiment.However, differences in dry matter partitioning to the shoot(the harvestable component) resulted in genotypic differencesin WUE, calculated on a harvestable dry matter basis, whichranged from 4.1 g DM kg-1H2O for M. sacchariflorus to 2.2 gDM kg-1H2O for M. x giganteus. Copyright 2000 Annals of BotanyCompany Miscanthus sinensis, Miscanthus sacchariflorus, Miscanthus x giganteus, water use efficiency, biomass, C4plants, drought  相似文献   

2.
We present SSR-based genetic maps from a cross between Miscanthus sacchariflorus Robustus and M. sinensis, the progenitors of the promising cellulosic biofuel feedstock Miscanthus × giganteus. cDNA-derived SSR markers were mapped by the two-way pseudo-testcross model due to the high heterozygosity of each parental species. A total of 261 loci were mapped in M. sacchariflorus, spanning 40 linkage groups and 1,998.8 cM, covering an estimated 72.7% of the genome. For M. sinensis, a total of 303 loci were mapped, forming 23 linkage groups and 2,238.3 cM, covering 84.9% of the genome. The use of cDNA-derived SSR loci permitted alignment of the Miscanthus linkage groups to the sorghum chromosomes, revealing a whole genome duplication affecting the Miscanthus lineage after the divergence of subtribes Sorghinae and Saccharinae, as well as traces of the pan-cereal whole genome duplication. While the present maps provide for many early research needs in this emerging crop, additional markers are also needed to improve map density and to further characterize the structural changes of the Miscanthus genome since its divergence from sorghum and Saccharum.  相似文献   

3.
Giant miscanthus (Miscanthus × giganteus Greef and Deuter) and Amur silver grass (Miscanthus sacchariflorus Maxim./Hack) are rhizomatous grasses with a C4 photosynthetic pathway that are widely cultivated as energy crops. For those species to be successfully used in bioenergy generation, their yields have to be maintained at a high level in the long term. The biomass yield (fresh and dry matter [DM] yield) and energy efficiency (energy inputs, energy output, energy gain, and energy efficiency ratio) of giant miscanthus and Amur silver grass were compared in a field experiment conducted in 2007–2017 in North‐Eastern Poland. Both species were characterized by high above‐ground biomass yields, and the productive performance of M. × giganteus was higher in comparison with M. sacchariflorus (15.5 vs. 9.3 Mg DM ha?1 year?1 averaged for 1–11 years of growth). In the first year of the experiment, the energy inputs associated with the production of M. × giganteus and M. sacchariflorus were determined at 70.5 and 71.5 GJ/ha, respectively, and rhizomes accounted for around 78%–79% of total energy inputs. In the remaining years of cultivation, the total energy inputs associated with the production of both perennial rhizomatous grasses reached 13.6–15.7 (M. × giganteus) and 16.9–17.5 GJ ha?1 year?1 (M. sacchariflorus). Beginning from the second year of cultivation, mineral fertilizers were the predominant energy inputs in the production of M. × giganteus (78%–86%) and M. sacchariflorus (80%–82%). In years 2–11, the energy gain of M. × giganteus reached 50 (year 2) and 264–350 GJ ha?1 year?1 (years 3–11), and its energy efficiency ratio was determined at 4.7 (year 2) and 18.6–23.3 (years 3–11). The energy gain and the energy efficiency ratio of M. sacchariflorus biomass in the corresponding periods were determined at 87–234 GJ ha?1 year?1 and 6.1–14.3, respectively. Both grasses are significant and environmentally compatible sources of bioenergy, and they can be regarded as potential energy crops for Central‐Eastern Europe.  相似文献   

4.
Plants from the genus Miscanthus are potential renewable sources of lignocellulosic biomass for energy production. A potential strategy for Miscanthus crop improvement involves interspecific manipulation of ploidy levels to generate superior germplasm and to circumvent reproductive barriers for the introduction of new genetic variation into core germplasm. Synthetic autotetraploid lines of Miscanthus sacchariflorus and Miscanthus sinensis, and autoallohexaploid Miscanthus x giganteus were produced in tissue culture from oryzalin treatments to seed‐ and immature inflorescence‐derived callus lines. This is the first report of the genome doubling of diploid M. sacchariflorus. Genome doubling of diploid M. sinensis, M. sacchariflorus, and triploid M. x giganteus to generate tetraploid and hexaploid lines was confirmed by stomata size, nuclear DNA content, and chromosome counts. A putative pentaploid line was also identified among the M. x giganteus synthetic polyploid lines by nuclear DNA content and chromosome counts. Comparisons of phenotypic performance of synthetic polyploid lines with their diploid and triploid progenitors in the greenhouse found species‐specific differences in plant tiller number, height, and flowering time among the doubled lines. Stem diameter tended to increase after polyploidization but there were no significant improvements in biomass traits. Under field conditions, M. x giganteus synthetic hexaploid lines showed greater phenotypic variation, in terms of plant height, stem diameter, and tiller number, than their progenitor lines. Production of synthetic autopolyploid lines displaying significant phenotypic variation suggests that ploidy manipulation can introduce useful genetic diversity in the limited Miscanthus germplasm currently available in the United States. The role of polyploidization in the evolution and breeding of the genus Miscanthus is discussed.  相似文献   

5.
In order to estimate the variation in nuclear genome size in Miscanthus, flow cytometry of nuclei stained by propidium iodide was carried out using 36 populations of three Miscanthus species: M. lutarioriparius, M. sacchariflorus and M. sinensis, which were sampled from cold northern to warm and humid southern and central China, as well as near the sea level in eastern China to mountains in western China. The DNA content of diploid was 4.37 ± 0.02 pg/2C in M. lutarioriparius, 4.37 ± 0.01 pg/2C in M. sacchariflorus, and 5.37 ± 0.03 pg/2C in M. sinensis, respectively. There was no intraspecific variation in the three Miscanthus species at the diploid level, suggesting that the genome size was stable within species and the diverse environments did not induce variation in genome size at the diploid level. However, tetraploid populations were found in M. lutarioriparius and M. sacchariflorus, and their genome sizes were 8.56 and 8.54 pg, respectively, which are lower than expected values (8.74 pg), indicating the genome downsizing after polyploidization in the genus. Our results showed that the plant height of M. lutarioriparius was the highest one among the three species and the species was more closely related to M. sacchariflorus than M. sinensis. The intra-species genomic variation and inter-species differentiation in Miscanthus species provide important genetic and genomic information for the development of Miscanthus, especially for the endemic species, M. lutarioriparius, (together with Miscanthus × giganteus) which are now emerging as a key bio-energy crop because of their high yields and strong adaptability.  相似文献   

6.
Efficient utilization of lignocellulosic Miscanthus biomass for the production of biochemicals, such as ethanol, is challenging due to its recalcitrance, which is influenced by the individual plant cell wall polymers and their interactions. Lignocellulosic biomass composition differs depending on several factors, such as plant age, harvest date, organ type, and genotype. Here, four selected Miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus, Miscanthus × giganteus, Miscanthus sinensis × Miscanthus sacchariflorus hybrid) were grown and harvested, separated into stems and leaves, and characterized for their non‐starch polysaccharide composition and structures, lignin contents and structures, and hydroxycinnamate profiles (monomers and ferulic acid dehydrodimers). Polysaccharides of all genotypes are mainly composed of cellulose and low‐substituted arabinoxylans. Ratios of hemicelluloses to cellulose were comparable, with the exception of Miscanthus sinensis that showed a higher hemicellulose/cellulose ratio. Lignin contents of Miscanthus stems were higher than those of Miscanthus leaves. Considering the same organs, the four genotypes did not differ in their Klason lignin contents, but Miscanthus × giganteus showed the highest acetylbromide soluble lignin content. Lignin polymers isolated from stems varied in their S/G ratios and linkage type distributions across genotypes. p‐Coumaric acid was the most abundant ester‐bound hydroxycinnamte monomer in all samples. Ferulic acid dehydrodimers were analyzed as cell wall cross‐links, with 8‐5‐coupled diferulic acid being the main dimer, followed by 8‐O‐4‐, and 5‐5‐diferulic acid. Contents of p‐coumaric acid, ferulic acid, and ferulic acid dimers varied depending on genotype and organ type. The largest amount of cell wall cross‐links was analyzed for Miscanthus sinensis.  相似文献   

7.
To breed improved biomass cultivars of Miscanthus ×giganteus, it will be necessary to select the highest‐yielding and best‐adapted genotypes of its parental species, Miscanthus sinensis and Miscanthus sacchariflorus. We phenotyped a diverse clonally propagated panel of 569 M. sinensis and nine natural diploid M. ×giganteus at one subtropical (Zhuji, China) and five temperate locations (Sapporo, Japan; Leamington, Ontario, Canada; Fort Collins, CO; Urbana, IL; and Chuncheon, Korea) for dry biomass yield and 14 yield‐component traits, in trials grown for 3 years. Notably, dry biomass yield of four Miscanthus accessions exceeded 80 Mg/ha in Zhuji, China, approaching the highest observed for any land plant. Additionally, six M. sinensis in Sapporo, Japan and one in Leamington, Canada also yielded more than the triploid M. ×giganteus ‘1993‐1780’ control, with values exceeding 20 Mg/ha. Diploid M. ×giganteus was the best‐yielding group at the northern sites. Genotype‐by‐environment interactions were modest among the five northern trial sites but large between Zhuji, and the northern sites. M. sinensis accessions typically yielded best at trial sites with latitudes similar to collection sites, although broad adaptation was observed for accessions from southern Japan. Genotypic heritabilities for third year yields ranged from 0.71 to 0.88 within locations. Compressed circumference was the best predictor of yield. These results establish a baseline of data for initiating selection to improve biomass yield of M. sinensis and M. ×giganteus in a diverse set of relevant geographies.  相似文献   

8.
Grasses from the genus Miscanthus have several characteristics that make them very favourable crops for efficient, low input, multifunctional and environmentally friendly biomass production. This study is aimed to improve a polyploidisation method to effectively induce polyploids in Miscanthus sinensis and Miscanthus x giganteus. Colchicine was applied for 2, 4 or 7 d in micropropagation systems using inflorescence segments at two different points: during callus induction (313 and 626 μM colchicine) and during shoot regeneration from callus (313 μM colchicine). Among the tested combinations, the most effective (up to 40%) was the 4-d colchicine treatment of a shoot-forming callus cultured 4 d before the experiment on regeneration medium under light conditions. In vitro colchicine treatment during callus induction and during shoot regeneration from callus resulted in no chimeric polyploids as well as a very low number of albinos (2.5%). Additionally, some combinations using colchicine did not significantly reduce the rates of micropropagation effectiveness. The obtained material is promising for the creation of new high-biomass-yielding forms in the Miscanthus genus. In all genotypes tested, chromosome doubling significantly increased pollen stainability. According to preliminary results, induced tetraploids are fertile and useful in hybrid production. Leaves of polyploid forms of two genotypes demonstrated significantly greater width in comparison to the controls.  相似文献   

9.
Information on genome size, ploidy level, and genomic polymorphisms among accessions of the genus Miscanthus can assist in taxonomic studies, help understand the evolution of the genus, and provide valuable information to biomass crop improvement programs. Taxonomic investigation combining variation in plant morphology, genome size, chromosome numbers, and simple sequence repeat (SSR) marker polymorphisms were applied to characterize 101 Miscanthus accessions. A total of 258 amplicons generated from 17 informative SSR primer pairs was subjected to cluster and principal coordinate analysis and used to characterize genetic variation and relationships among 31 Miscanthus accessions, including four interspecific Miscanthus hybrids created from controlled pollinations, and four Saccharum, six Erianthus, and one Sorghum bicolor accessions. Miscanthus accessions were distinct from accessions in the genera Erianthus and Saccharum. Miscanthus accessions fell into five taxonomic groups, including the existing taxonomic section Miscanthus, diploid and tetraploid Miscanthus sacchariflorus, and a fourth (M. × giganteus) and fifth group (Miscanthus ‘purpurascens’); the last two being intermediate forms. In contrast to previous work, our findings suggest diploid and tetraploid M. sacchariflorus are taxonomically different, the latter more closely related to M. sacchariflorus var lutarioriparius. We also suggest that Miscanthus ‘purpurascens’ accessions are interspecific hybrids between Miscanthus sinensis and diploid M. sacchariflorus based on DNA content and SSR polymorphisms. The evolution of Miscanthus and related genera is discussed based on combined analysis and geographical origin.  相似文献   

10.
Miscanthus is a C4 bioenergy perennial crop characterized by its high potential yield. Our study aimed to compare the carbon storage capacities of Miscanthus sinensis (M. sinensis) with that of Miscanthus × giganteus (M. × giganteus) in field conditions in different types of soils in France. We set up a multi‐environment experimental network. On each trial, we tested two treatments: M. × giganteus established from rhizomes (Gr) and M. sinensis transplanted seedlings (Sp). We quantified the soil organic carbon (SOC) stock at equivalent soil mass for both genotypes in 2014 and 2019 and for two sampling depths: L1 (ca. 0–5 cm) and L1‐2 (ca. 0–30 cm). We also calculated the total and annual variation of the SOC stock and investigated factors that could explain the variation and the initial state of the SOC stock. ANOVAs were performed to compare the SOC stock, as well as the SOC stock variation rates across treatments and soil layers. Results showed that the soil bulk density did not vary significantly between 2014 and 2019 for both treatments (Gr and Sp). The SOC concentration (i.e. SOC expressed in g/kg) increased significantly between 2014 and 2019 in L1, whereas no significant evolution was found in L2 (ca. 5–30 cm). The SOC stock (i.e. SOC expressed in t/ha) increased significantly in the superficial layer L1 for M. × giganteus and M. sinensis, by 0.48 ± 0.41 and 0.54 ± 0.25 t ha?1 year?1 on average, respectively, although no significant change was detected in the layer L1‐2 for both genotypes. Moreover, SOC stocks in 2019 did not differ significantly between M. × giganteus and M. sinensis in the soil layers L1 and L1‐2. Lastly, our results showed that the initial SOC stock was significantly higher when miscanthus was grown after set‐aside than after annual crops.  相似文献   

11.
Miscanthus is a C4 perennial grass originating from East Asia, the yields of which progressively increase in the first years of growth. Several species for bioenergy have been studied since the mid‐1980s in Europe, in particular (Miscanthus × giganteus [M. × giganteus]), due to its high yields. M. × giganteus is mainly cultivated in France and established from rhizomes. Our study aimed to assess, in field conditions, alternative establishment methods combined with an alternative species, Miscanthus sinensis (M. sinensis). We set up a multi‐environment experimental network. On each trial, we tested two treatments with M. × giganteus, established from rhizomes (G_r‐sd) and from plantlets obtained from rhizomes (G_p‐sd), and two treatments with M. sinensis seedlings transplanted in single (S_p‐sd) and double density (S_p‐dd). ANOVA was performed to compare establishment and regrowth rates across treatments, as well as yields across treatments and site‐years. A logistic model was used to describe yield trends and to compare the maximum yield reached and the rate of yield increase of both species. Results showed that miscanthus establishment from plantlets resulted in higher establishment (between 87% and 92%) and regrowth (between 91% and 94%) rates compared to establishment from rhizomes. Treatments with M. × giganteus obtained higher average yields across site‐years than those with M. sinensis, but more variable yields across site‐years. We showed a strong species effect on yields, yield components (shoot weight, shoot density and shoot number per plant) and light interception (through leaf area index). Lastly, to use M. sinensis established from transplanted plantlets as an alternative to M. × giganteus, research would be required on the breeding of M. sinensis sterile seeds to avoid risks of invasiveness.  相似文献   

12.
The demand for perennial nonfood crops, such as miscanthus, is increasing steadily, as fossil resources are replaced by biomass. However, as the establishment of miscanthus is very expensive, its cultivation area in Europe is still small. The most common propagation method for miscanthus is via rhizomes, the harvesting of which is very labour‐intensive. Seed propagation is promising, but not suitable for sterile genotypes. In this study, a new vegetative propagation method, ‘collar propagation’, was tested in field and controlled environment studies. Collars are built at the junction between rhizome and stem. They can be harvested in a less destructive way than rhizomes by pulling out the stems from winter‐dormant miscanthus plants. One genotype of each of the species M. sacchariflorus, M. × giganteus, M. sinensis in combination with three fragment types (collars, rhizomes, collars + rhizomes) were tested for establishment success and plant performance. The performance (e.g. dry matter yield) of collar‐propagated plants was either better than or not significantly different from rhizome‐propagated plants. Pregrown plantlets transplanted into the field showed no significant differences in establishment success between the fragments within a genotype. When directly planted into the field however, the fragment ‘rhizome+collar’ had a significantly better establishment success than the other two. The winter survival rate of the fragment ‘rhizome+collar’ was 70% for M. sacchariflorus and 75% for M. × giganteus. Emergence success from collar‐derived plants was not affected by harvest date (harvested monthly from November to February). This study showed that miscanthus propagation via collars is feasible and a promising alternative to rhizome propagation, as the multiplication rate of collars is comparable to that of rhizome propagation. Collar propagation is the more suitable method for the tested genotypes of the species M. sachariflorus and M. × giganteus, but not for M. sinensis genotypes, which may be better propagated by seeds.  相似文献   

13.
Miscanthus is a high-yielding bioenergy crop that is broadly adapted to temperate and tropical environments. Commercial cultivation of Miscanthus is predominantly limited to a single sterile triploid clone of Miscanthus × giganteus, a hybrid between Miscanthus sacchariflorus and M. sinensis. To expand the genetic base of M. × giganteus, the substantial diversity within its progenitor species should be used for cultivar improvement and diversification. Here, we phenotyped a diversity panel of 605 M. sacchariflorus from six previously described genetic groups and 27 M. × giganteus genotypes for dry biomass yield and 16 yield-component traits, in field trials grown over 3 years at one subtropical location (Zhuji, China) and four temperate locations (Foulum, Denmark; Sapporo, Japan; Urbana, Illinois; and Chuncheon, South Korea). There was considerable diversity in yield and yield-component traits among and within genetic groups of M. sacchariflorus, and across the five locations. Biomass yield of M. sacchariflorus ranged from 0.003 to 34.0 Mg ha−1 in year 3. Variation among the genetic groups was typically greater than within, so selection of genetic group should be an important first step for breeding with M. sacchariflorus. The Yangtze 2x genetic group (=ssp. lutarioriparius) of M. sacchariflorus had the tallest and thickest culms at all locations tested. Notably, the Yangtze 2x genetic group's exceptional culm length and yield potential were driven primarily by a large number of nodes (>29 nodes culm−1 average over all locations), which was consistent with the especially late flowering of this group. The S Japan 4x, the N China/Korea/Russia 4x, and the N China 2x genetic groups were also promising genetic resources for biomass yield, culm length, and culm thickness, especially for temperate environments. Culm length was the best indicator of yield potential in M. sacchariflorus. These results will inform breeders' selection of M. sacchariflorus genotypes for population improvement and adaptation to target production environments.  相似文献   

14.
A simple, efficient protocol for direct in vitro shoot organogenesis and regeneration was established for three species of Miscanthus including two clones of Miscanthus x giganteus, one clone of M. sinensis and one clone of M. sacchariflorus. Shoots were induced from the axillary nodes of both M. x giganteus and M. sacchariflorus and from apical meristems of both M. sinensis and M. sacchariflorus. A tillering method was used to accelerate shoot proliferation. Shoots were rooted in a wet perlite substrate in pots in the greenhouse. Subsequently, rooted plants were transferred to the field. The genetic uniformity of regenerated plants was evaluated using amplified fragment length polymorphism analysis and compared to that of rhizome-propagated plants. A total of 33,443 fragments were generated, representing 869 markers. There were 21 fragments (0.06 % of the fragments) or 19 markers (2.19 % of the markers) that were polymorphic, and almost all of these were singletons. The three species showed similar polymorphisms. Genetic variability was also found in the rhizome-propagated plants, sometimes at a higher rate than in the in vitro culture, indicating that the genetic uniformity was not altered by the protocol. This protocol may help breeders produce new clones of Miscanthus in the future.  相似文献   

15.
The perennial grass, Miscanthus×giganteus is a sterile triploid, which due to its growth rate and biomass accumulation has significant economic potential as a new bioenergy crop. The sterility associated with the triploid genome of this accession requires labor‐intensive vegetative, instead of seed propagation for potential commercial production. Chromosome doubling was used to produce hexaploid plants in an effort to restore fertility to M×giganteus. Tissue culture derived calli from immature inflorescences were treated with the antimitotic agents, colchicine and oryzalin in liquid and solid media. Calli survival rate decreased with increasing concentrations and durations of colchicine or oryzalin treatments and ranged from 0% to 100%. Nuclear DNA content, as determined by flow cytometry, indicated that the frequency of chromosome‐doubled calli varied between compounds and concentrations with the greatest proportion of callus doubling observed using 2‐day treatments of 15 μm oryzalin (78%) or 939 μm colchicine (67%). Liquid media treatments were more effective than solid gels for chromosome doubling. Although oryzalin was effective at chromosome doubling, it inhibited callus growth and plant regeneration frequency. Seven hexaploid plants with doubled DNA content were generated, which displayed increased stomata size (30.0±0.2 μm) compared with regenerated triploid M. ×giganteus plants (24.3±1.0 μm). Following clonal replication these plants will be evaluated for growth rate, biomass accumulation, and pollen viability. Successful chromosome doubling and plant regeneration of M.×giganteus suggests that ploidy manipulation of this plant and its parental species (Miscanthus sinensis and Miscanthus sacchariflorus) could be a means to access genetic variability for the improvement of Miscanthus as a biofuel/bioenergy crop.  相似文献   

16.
Chilling temperatures (0–15°C) inhibit photosynthesis in most C4 grasses, yet photosynthesis is chilling tolerant in the ‘Illinois’ clone of the C4 grass Miscanthus x giganteus, a candidate cellulosic bioenergy crop. M. x giganteus is a hybrid between Miscanthus sacchariflorus and Miscanthus sinensis; therefore chilling‐tolerant parent lines might produce hybrids superior to the current clone. Recently a collection of M. sacchariflorus from Siberia, the apparent low temperature limit of natural distribution, became available, which may be a source for chilling tolerance. The collection was screened for chilling tolerance of photosynthesis by measuring dark‐adapted maximum quantum yield of PSII photochemistry (Fv/Fm) on plants in the field in cool weather. Superior accessions were selected for further phenotyping: plants were grown at 25°C, transferred to 10°C (chilling) for 15 days, and returned to 25°C for 7 days (recovery). Two experiments assessed: (a) light‐saturated net photosynthetic rate (Asat) and operating quantum yield of PSII photochemistry (ΦPSII), (b) response of net leaf CO2 uptake (A) to intercellular [CO2] (ci). Three accessions showed superior chilling tolerance: RU2012‐069 and RU2012‐114 achieved Asat up to double that of M. x giganteus prior to and during chilling, due to increased ci ‐ saturated photosynthesis (Vmax). RU2012‐069 and RU2012‐114 also maintained greater levels of ΦPSII during chilling, indicating reduced photodamage. Additionally, accession RU2012‐112 maintained a stable Asat throughout the 15‐day chilling period, while Asat continuously declined in other accessions; this suggests RU2012‐112 could outperform others in lengthy chilling periods. Plants were returned to 25°C after the chilling period; M. x giganteus showed the weakest recovery after 1 day, but a strong recovery after 1 week. This study has therefore identified important genetic resources for the synthesis of improved lines of M. x giganteus, which could facilitate the displacement of fossil fuels by cellulosic bioenergy.  相似文献   

17.
Perennial grasses are promising candidates for bioenergy crops, but species that can escape cultivation and establish self‐sustaining naturalized populations (feral) may have the potential to become invasive. Fertile Miscanthus × giganteus, known as “PowerCane,” is a new potential biofuel crop. Its parent species are ornamental, non‐native Miscanthus species that establish feral populations and are sometimes invasive in the USA. As a first step toward assessing the potential for “PowerCane” to become invasive, we documented its growth and fecundity relative to one of its parent species (Miscanthus sinensis) in competition with native and invasive grasses in common garden experiments located in Columbus, Ohio and Ames, Iowa, within the targeted range of biofuel cultivation. We conducted a 2‐year experiment to compare growth and reproduction among three Miscanthus biotypes—”PowerCane,” ornamental M. sinensis, and feral M. sinensis—at two locations. Single Miscanthus plants were subjected to competition with a native grass (Panicum virgatum), a weedy grass (Bromus inermis), or no competition. Response variables were aboveground biomass, number of shoots, basal area, and seed set. In Iowa, all Miscanthus plants died after the first winter, which was unusually cold, so no further results are reported from the Iowa site. In Ohio, we found significant differences among biotypes in growth and fecundity, as well as significant effects of competition. Interactions between these treatments were not significant. “PowerCane” performed as well or better than ornamental or feral M. sinensis in vegetative traits, but had much lower seed production, perhaps due to pollen limitation. In general, ornamental M. sinensis performed somewhat better than feral M. sinensis. Our findings suggest that feral populations of “PowerCane” could become established adjacent to biofuel production areas. Fertile Miscanthus × giganteus should be studied further to assess its potential to spread via seed production in large, sexually compatible populations.  相似文献   

18.
19.
Humulus japonicus in communities of Miscanthus sacchariflorus and Phragmites australis can grow large enough to overtop other species in the Amsa-dong floodplain. Because of strong winds and the weight of Humulus, plants of M. sacchariflorus and P. australis fell in mid-August and were subject to decomposition under its dense shading. To assess the effects of H. japonicus on nutrient cycling in these communities, we collected fresh samples of M. sacchariflorus and P. australis in litterbags and decomposed them under H. japonicus for 9 months, beginning in August. Biomass and organic contents from M. sacchariflorus during this incubation period were 49–51% and 44–48%, whereas those of P. australis were 49–61% and 32–52%, respectively. Their annual k values were 1.61–1.74 and 1.46–3.54, respectively. Initial N concentrations in M. sacchariflorus and P. australis were 13 and 20 mg g−1, while C:N ratios were 31 and 21, respectively. These results indicate that H. japonicus is responsible for the collapse of M. sacchariflorus and P. australis in August and also accelerates their nutrient cycling through rapid decomposition, thereby increasing nutrient circulation in floodplains.  相似文献   

20.
The perennial grass triploid Miscanthus × giganteus is a promising renewable bioenergy feedstock in the United States and Europe. Originating from eastern Asia, this species is a sterile hybrid cross between M. sinensis and M. sacchariflorus. While research has begun to examine the impacts of M. sinensis and triploid M. × giganteus on the landscape, M. sacchariflorus has been largely overlooked in the peer‐reviewed literature. This review article discusses the origin, uses, distribution, and invasive potential of M. sacchariflorus. M. sacchariflorus is capable of producing high yields (10.7 t DM ha?1 yr?1), generally does not reproduce by seed, and can be challenging to establish due to poor cold tolerance, likely due to the limited germplasm used in evaluations. However, M. sacchariflorus has abundant and aggressively spreading rhizomes, which underscores its invasive risk. In the United States, it is listed as escaped from cultivation in at least eight states, primarily in the Midwest, although it is likely that not all populations have been reported. As such, it is essential to generate a comprehensive dataset of all known M. sacchariflorus populations and monitor any continued spread of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号