首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we have used single-cell RT-PCR in conjunction with electrophysiology to examine the expression and functional properties of metabotropic glutamate receptors (mGluRs) expressed within biochemically identified cholinergic interneurones in the rat striatum. Using single-cell RT-PCR, it was possible to demonstrate the presence of mGluR1, mGluR2, mGluR3, mGluR5 and mGluR7 mRNAs within single cholinergic interneurones. Bath application of the non-selective mGluR agonist (1 S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1 S,3R-ACPD) or the group-I mGluR agonist 3,5-dihydroxyphenylglycine (DHPG) depolarized all cholinergic neurones tested by activation of an inward current at -60 mV. The effects of DHPG were partially inhibited by the mGluR5 selective antagonist 6-methyl-2-(pherazo)-3-pyridinol and by the non-selective group-I antagonist alpha-methyl-4-carboxyphenylglycine but were not mimicked by the group-II and group-III selective mGluR agonists 2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) and L-2-amino-4-phosphonobutanoate (L-AP4), respectively. Intrastriatal stimulation evoked an excitatory postsynaptic current within cholinergic neurones that was reversibly inhibited by bath application of the group-II and group-III selective mGluR agonists DCG-IV and L-AP4, respectively, via presynaptic actions. In summary, we have identified the mGluRs expressed by striatal cholinergic interneurones and demonstrated that their activation produces modulatory effects via both pre- and postsynaptic mechanisms.  相似文献   

2.
Electrical stimulation of mechanosensory afferents innervating hairs on the surface of the exopodite in crayfish Procambarus clarkii (Girard) elicited reciprocal activation of the antagonistic set of uropod motor neurones. The closer motor neurones were excited while the opener motor neurones were inhibited. This reciprocal pattern of activity in the uropod motor neurones was also produced by bath application of acetylcholine (ACh) and the cholinergic agonist, carbamylcholine (carbachol). The closing pattern of activity in the uropod motor neurones produced by sensory stimulation was completely eliminated by bath application of the ACh blocker, d-tubocurarine, though the spontaneous activity of the motor neurones was not affected significantly. Bath application of the acetylcholinesterase inhibitor, neostigmine, increased the amplitude and extended the time course of excitatory postsynaptic potentials (EPSPs) of ascending interneurones elicited by sensory stimulation. These results strongly suggest that synaptic transmission from mechanosensory afferents innervating hairs on the surface of the tailfan is cholinergic.Bath application of the cholinergic antagonists, dtubocurarine (vertebrate nicotinic antagonist) and atropine (muscarinic antagonist) reversibly reduced the amplitude of EPSPs in many identified ascending and spiking local interneurones during sensory stimulation. Bath application of the cholinergic agonists, nicotine (nicotinic agonist) and oxotremorine (muscarinic agonist) also reduced EPSP amplitude. Nicotine caused a rapid depolarization of membrane potential with, in some cases, spikes in the interneurones. In the presence of nicotine, interneurones showed almost no response to the sensory stimulation, probably owing to desensitization of postsynaptic receptors. On the other hand, no remarkable changes in membrane potential of interneurones were observed after oxotremorine application. These results suggest that ACh released from the mechanosensory afferents depolarizes interneurones by acting on receptors similar to vertebrate nicotinic receptors.Abbreviations ACh cetylcholine - mns motor neurones - asc int ascending interneurone  相似文献   

3.
Summary Immunoreactivity for calretinin, a calcium-binding protein, was studied in neurones in the guinea-pig small intestine. 26±1% of myenteric neurones and 12±3% of submucous neurones were immunoreactive for calretinin. All calretinin-immunoreactive neurones were also immunoreactive for choline acetyltransferase and hence are likely to be cholinergic. In the myenteric plexus, two subtypes of Dogiel type-I calretinin-immunoreactive neurones could be distinguished from their projections and neurochemical coding. Some calretinin-immunoreactive myenteric neurones had short projections to the tertiary plexus, and hence are likely to be cholinergic motor neurones to the longitudinal muscle. Some of these cells were also immunoreactive for substance P. The remaining myenteric neurones, immunoreactive for calretinin, enkephalin, neurofilament protein triplet and substance P, are likely to be orad-projecting, cholinergic interneurones. Calretinin immunoreactivity was also found in cholinergic neurones in the submucosa, which project to the submucosal vasculature and mucosal glands, and which are likely to mediate vasodilation. Thus, calretinin immunoreactivity in the guinea-pig small intestine is confined to three functional classes of cholinergic neurones. It is possible, for the first time, to distinguish these classes of cells from other enteric neurones.  相似文献   

4.
The ubiquitous polyamines spermidine and spermine are known as modulators of glutamate receptors and inwardly rectifying potassium channels. They are synthesized by a set of specific enzymes in which spermidine synthase is the rate-limiting step catalysing the formation of the spermine precursor spermidine from putrescine. Spermidine and spermine were previously localized to astrocytes, probably reflecting storage rather than synthesis in these cells. In order to identify the cellular origin of spermidine and spermine synthesis in the brain, antibodies were raised against recombinant mouse spermidine synthase. As expected, strong spermidine synthase-like immunoreactivity was obtained in regions known to express high levels of spermidine and spermine, such as the hypothalamic paraventricular and supraoptic nuclei. In the striatum, spermidine synthase was found in neurones and the neuropil of the patch compartment (striosome) as defined by expression of the micro opiate receptor. The distinct expression pattern of spermidine synthase, however, only partially overlapped with the distribution of the products spermidine and spermine in the striatum. In addition, spermidine synthase-like immunoreactivity was seen in patch compartment-apposed putative interneurones. These spermidine synthase-positive neurones did not express any marker characteristic of the major striatal interneurone classes. The neuropil labelling in the patch compartment and in adjacent putative interneurones may indicate a role for polyamines in intercompartmental signalling in the striatum.  相似文献   

5.
The responses of single vibratory receptors and ascending ventral cord interneurones were studied extracellularly in Gryllus campestris L. The physiology of the vibration receptors resembled those found in tettigoniids and locusts. The frequency responses of the subgenual receptors provide two possible cues for central frequency discrimination: differences in mean tuning between groups of receptors in the different leg pairs and a range of receptors tuned to different frequencies within one subgenual organ.Most of the ascending vibratory interneurones were highly sensitive in either the low or high frequency range. Broadbanded neurones were less sensitive. The characteristic sensitivity peaks of these units are due mainly to receptor inputs from a particular leg pair, although most central neurones receive inputs from all 6 legs. Only one neurone type, TN1 received excitatory inputs from both auditory and vibratory receptors; its responses were greatly enhanced by the simultaneous presentation of both stimulus modes. The responses to sound stimuli of AN2, on the other hand, were inhibited by vibration. No other auditory interneurones investigated were influenced by inputs from vibration receptors. Central processing of vibratory information in the cricket is compared with that of tettigoniids and locusts.  相似文献   

6.
Destruction of the glutamatergic corticostriatal pathway potentiates the neurotoxic action of 1 mumol L-glutamate injected into the rat striatum, whereas the toxic effects of 10 nmol kainate are markedly attenuated. Injection of 170 nmol of the glutamate uptake inhibitor, DL-threo-3-hydroxyaspartate, into the intact striatum also causes neuronal degeneration, which is accompanied by a reduction in markers for cholinergic and GABAergic neurones. Prior removal of the corticostriatal pathway destroys the ability of DL-threo-3-hydroxyaspartate to cause lesions in the striatum. These results indicate that removal, or blockade, of uptake sites for glutamate increase the vulnerability of striatal neurones to the toxic effects of synaptically released glutamate.  相似文献   

7.
The contribution of ATP-sensitive potassium (K(ATP)) channels to neuronal excitability was studied in different types of pyramidal cells and interneurones in hippocampal slices prepared from 9- to 15-day-old rats. The presence of functional K(ATP) channels in the neurones was detected through the sensitivity of whole-cell currents to diazoxide, a K(ATP) channel opener, and to tolbutamide, a K(ATP) channel inhibitor. The percentages of neurones with K(ATP) channels increase in the sequence: CA1 pyramidal cells (37%)相似文献   

8.
In addition to the well-characterized direct and indirect projection neurons there are four major interneuron types in the striatum. Three contain GABA and either parvalbumin, calretinin or NOS/NPY/somatostatin. The fourth is cholinergic. It might be assumed that dissociated cell cultures of striatum (typically from embryonic day E18.5 in rat and E14.5 for mouse) contain each of these neuronal types. However, in dissociated rat striatal (caudate/putamen, CPu) cultures arguably the most important interneuron, the giant aspiny cholinergic neuron, is not present. When dissociated striatal neurons from E14.5 Sprague–Dawley rats were mixed with those from E18.5 rats, combined cultures from these two gestational periods yielded surviving cholinergic interneurons and representative populations of the other interneuron types at 5 weeks in vitro. Neurons from E12.5 CD-1 mice were combined with CPu neurons from E14.5 mice and the characteristics of striatal interneurons after 5 weeks in vitro were determined. All four major classes of interneurons were identified in these cultures as well as rare tyrosine hydroxylase positive interneurons. However, E14.5 mouse CPu cultures contained relatively few cholinergic interneurons rather than the nearly total absence seen in the rat. A later dissection day (E16.5) was required to obtain mouse CPu cultures totally lacking the cholinergic interneuron. We show that these cultures generated from two gestational age cells have much more nearly normal proportions of interneurons than the more common organotypic cultures of striatum. Interneurons are generated from both ages of embryos except for the cholinergic interneurons that originate from the medial ganglionic eminence of younger embryos. Study of these cultures should more accurately reflect neuronal processing as it occurs in the striatum in vivo. Furthermore, these results reveal a procedure for parallel culture of striatum and cholinergic depleted striatum that can be used to examine the function of the cholinergic interneuron in striatal networks.  相似文献   

9.
The possible influence of cholinergic and dopaminergic mechanisms on neurotensin-containing neurones was examined at two different levels; nucleus accumbens and striatum in the rat brain. The acute treatment with the anticholinergic drugs atropine and scopolamine increased neurotensin concentrations in the striatum and, in the former case, also in the nucleus accumbens. Subchronic administration of atropine resulted in tolerance to its neurotensin-elevating action within the accumbens, but not within the striatum. Combined treatment with submaximal doses of haloperidol and atropine resulted in increases in neurotensin content which were greater than those seen with either agent alone. This was true regardless of whether the drugs were administered acutely or subchronically. This observation demonstrated that the tolerance phenomena occurring after subchronic elozapine and fluperlapine were not attributable to their anticholinergic activity. The control of striatal and accumbal neurotensin content by antidopaminergic and anticholinergic drugs seemed to be quite specific: drugs with actions on noradrenergic, serotoninergic, GABA-ergic and opiate systems did not influence the neurotensin content in these two structures. Preliminary studies on the effects of haloperidol on neurotensin release from striatal slices in vitro and that of cycloheximide on haloperidol's effect in vivo, suggest a possible inhibitory action of dopamine receptor blockade on neurotensin release.  相似文献   

10.
This review addresses the question of interrelations between spinal interneuronal networks. On the basis of electrophysiological, pharmacological, morphological and immunohistochemical analysis of interneurones mediating various reflex actions from muscle receptors and of reticulospinal neurones a considerable degree of interweaving between networks of these neurones has been established. The coupling has been found to occur at the level of several sites of these networks but the review focuses on two of these sites. The first is between dorsal horn interneurones with group II input and their target ipsilaterally and contralaterally projecting intermediate zone and commissural interneurones. The second is between commissural interneurones with input from reticulospinal neurones and their target interneurones. Several ways of both strengthening and weakening of coupling between various interneuronal networks are also briefly reviewed.  相似文献   

11.
A spinal "respiration" generator has been shown to fire phrenic motoneurones in rhythmic bursts. It is very likely driven through bulbo-spinal inspiratory neurones in intact preparations. Although no direct evidence for respiratory interneurones at the C4-C5 spinal levels has been obtained so far (except for Renshaw cells ), it is currently believed that only few inspiratory inputs to the phrenic motoneurones are transmitted monosynaptically from the medulla. We have tried here to record spinal interneuronal respiratory activities in decorticate, unanaesthetized, vagotomized and curarized rabbit preparations. Different functional categories of interneurones could be identified at the C4-C5 spinal levels: inspiratory and expiratory interneurons with various discharge patterns which rather well correspond to the functional categories of inspiratory and expiratory bulbo-spinal neurones described by Bianchi and Richter. In addition, multiunit inspiratory bursting could be followed over several 100 microns during each electrode penetration. The different categories of interneurones were encountered laterally from 700 to 1,000 microns, at depths ranging from 300 to 500 microns dorsally to the phrenic nucleus, down to the nucleus itself. These results indicate that part of the medullary inspiratory drive is channelled via spinal cord interneurones; they also suggest that an inhibition of phrenic motoneurones from the bulbo-spinal expiratory drive takes place via interneurones.  相似文献   

12.
Summary At the distal end of a mesothoracic tibia of the locust,Schistocerca gregaria, is a chordotonal organ which monitors the position and movement of the tarsus relative to the tibia. It contains approximately 35 receptors that variously encode different spatial and temporal parameters (position, velocity and direction of movement). Some excite intersegmental interneurones that respond phasically or tonically, with directional sensitivity to active or imposed movements of the tarsus. Some of these interneurones are also excited by intrinsic movements of the tarsal segments. Others, besides being excited by tarsal proprioceptive inputs, are also excited by exteroreceptors on the tarsus.When stimulated mechanically or electrically, chordotonal afferents evoke excitatory postsynaptic potentials with a central latency of between 0.9 and 1.4 ms simultaneously in the intersegmental interneurones and in tarsal motor neurones. The central arborizations of the afferents, the intersegmental interneurones and the tarsal motor neurones overlap in certain neuropilar regions of the mesothoracic ganglion. Other afferents cause an inhibition of the motor neurones, with a longer and non-consistent latency suggesting the involvement of other intercalated interneurones.These results indicate that proprioceptive inputs from the tarsal joint receptors are transmitted in parallel and monosynaptically to tarsal motor neurones and to the intersegmental interneurones.  相似文献   

13.
Summary The central projections of ocellar interneurones in two species of trichopterous insects Agrypnia varia F. and Limnephilus flavicornis F. were analysed by use of cobalt iontophoresis. The interneurones were classified into three groups: large-, medium- and small-caliber neurones based on the diameters of the axons. Seven large-diameter neurones project from each lateral ocellus into the central nervous system. Of these, four neurones terminate in the posterior slope (three ipsilateral and one contralateral). Three neurones possess branches in the contralateral posterior slope and proceed down the cervical connective into the thoracic ganglia. Medium-sized neurones connect the neuropiles of the three ocelli to each other. Small-diameter neurones contact the contralateral lobula and medulla of the optic lobes and connect the three ocellar neuropiles. Large-diameter neurones of the median ocellus were found to terminate bilaterally or ipsilaterally in the posterior slope. In the posterior slope four different subregions can be recognised: (1) the dorso-lateral, (2) the ventro-lateral, (3) the lateral, into which large-diameter interneurones of the lateral ocelli send branches, and (4) the medial, innervated by interneurones of the median ocellus. Interneurones of the median ocellus send branches into the lateral region as well.  相似文献   

14.
The neural pathways underlying the processing of signals from locust (Schistocerca gregaria) ovipositor hairs by different classes of interneurones are investigated.Spikes in the sensory neurones from these hairs evoke chemically-mediated, unitary EPSPs with a short and constant latency in six identified non-giant projection interneurones with cell bodies in the terminal abdominal ganglion. Five of these interneurones receive direct inputs from the valves ipsilateral to their neuropilar branches, whereas the other receives direct inputs from valves on both sides. The sensory neurone from a single hair makes divergent connections with several interneurones and those from different hairs make convergent connections with a given interneurone. The amplitude of the EPSPs evoked depends on the position of a hair along the proximal-distal axis of the valve, with sensory neurones from more distal hairs generating larger amplitude EPSPs.Deflection of hairs also excites three of the four giant projection interneurones through polysynaptic pathways and some local interneurones in the terminal abdominal ganglion through monosynaptic connections. Branches of non-giant projection interneurones, local interneurones, but not those of the giant interneurones, overlap the axon terminals of the ovipositor hair afferents in the terminal abdominal ganglion.  相似文献   

15.
The role of non-spiking local interneurones in the synaptic interactions between abdominal extension-evoking descending interneurones and uropod motor neurones in the terminal abdominal ganglion of the crayfish Procambarus clarkii (Girard) was investigated electrophysiologically. Continuous electrical stimulation of the lateral region of the 3rd-4th abdominal connective that included abdominal extension evoking interneurones excited the opener motor neurones and inhibited the closer, reductor motor neurone. Spikes from a single descending interneurone evoked consistent and short latency (0.8–0.9 ms) excitatory postsynaptic potentials (e.p.s.ps) in the opener motor neurones, and evoked rather long-latency (1.5–2.7 ms) inhibitory postsynaptic potentials (i.p.s.ps) in the reductor motor neurone. Many non-spiking interneurones also received depolarizing p.s.ps (0.8–2.5 ms in latency) that were usually faster than i.p.s.ps of the reductor motor neurone if both neurones were recorded sequentially in the same preparation. Non-spiking interneurones received convergent inputs from several descending interneurones and made inverting connection with the reductor motor neurone. Elimination of descending inputs to a particular non-spiking interneurone could reduce the inhibitory response of the reductor motor neurone. These observations strongly suggested that descending inhibitory inputs to the closer, reductor motor neurone were mediated by non-spiking interneurones. Furthermore, some non-spiking interneurones made output connections with the opener motor neurones. The disynaptic pathway through non-spiking interneurones is significant to control and modulate the opening pattern of the uropod during abdominal extension. Accepted: 27 December 1996  相似文献   

16.
In Parkinson's disease, nigral dopaminergic neurones degenerate, whereas post-synaptic striatal target neurones are spared. In some atypical parkinsonian syndromes, both nigral and striatal neurones degenerate. Reduced activity of complex I of the mitochondrial respiratory chain has been implicated in both conditions, but it remains unclear if this affects the whole organism or only the degenerating brain structures. We therefore investigated the differential vulnerability of various brain structures to generalized complex I inhibition. Male Lewis rats infused with rotenone, a lipophilic complex I inhibitor [2.5 mg/kg/day intraveneously (i.v.) for 28 days], were compared with vehicle-infused controls. They showed reduced locomotor activity and loss of striatal dopaminergic fibres (54%), nigral dopaminergic neurones (28.5%), striatal serotoninergic fibres (34%), striatal DARPP-32-positive projection neurones (26.5%), striatal cholinergic interneurones (22.1%), cholinergic neurones in the pedunculopontine tegmental nucleus (23.7%) and noradrenergic neurones in the locus ceruleus (26.4%). Silver impregnation revealed pronounced degeneration in basal ganglia and brain stem nuclei, whereas the hippocampus, cerebellum and cerebral cortex were less affected. These data suggest that a generalized mitochondrial failure may be implicated in atypical parkinsonian syndromes but do not support the hypothesis that a generalized complex I inhibition results in the rather selective nigral lesion observed in Parkinson's disease.  相似文献   

17.
Activities of five enzymes (pyruvate dehydrogenase complex; citrate synthase, EC 4.1.3.7; carnitine acetyltransferase, EC 2.3.1.7; acetyl-CoA synthetase, EC 6.2.1.1; and ATP citrate lyase, EC 4.1.3.8) were determined in cell bodies of anterior horn cells and dorsal root ganglion cells from the rabbit. For comparison, molecular layer, granular layer and white matter from rabbit and mouse cerebella and cerebral cortex and striatum from the mouse were analyzed. Samples (3–85 ng dry weight) were assayed in 180 to 370 ml of assay reagents containing CoASH and other substrates in excess. By using ‘CoA cycling’, the assay systems were devised to amplify and measure small amounts of acetyl-CoA formed during the enzyme reactions. Carnitine acetyltransferase was the most active enzyme in single nerve cell bodies and all layer samples, except for rabbit and mouse cerebellar white matter. Citrate synthetase was the lowest in single cell bodies. The activities of carnitine acetyltransferase and acetyl-CoA synthetase (656 and 89.8 mmoles of acetyl-CoA formed/kg of dry weight/h at 38°C) from dorsal root ganglion cells were about 2-fold higher than those from anterior horn cells. The activity of ATP citrate lyase (134mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) from anterior horn cells was approximately twice that from dorsal root ganglion cells. The activity of this enzyme was distributed in a wider range in anterior horn cells than dorsal root ganglion cells. The second highest activity (80.0 mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) of ATP citrate lyase was found in striatum where cholinergic interneurones are abundant. Relatively higher activities of this enzyme were found in cerebellar granular layer and white matter which are known to contain the cholinergic mossy fibers. These results suggested that cholinergic neurones contain higher activity of ATP citrate lyase which is thought to supply acetyl-CoA to choline acetyltransferase (EC 2.3.1.6) as a substrate to form acetylcholine.  相似文献   

18.
Summary The output connections of a bilaterally symmetrical pair of wind-sensitive interneurones (called A4I1) were determined in a non-flying locust (Schistocerca gregaria). Direct inputs from sensory neurones of specific prosternai and head hairs initiate spikes in these interneurones in the prothoracic ganglion.The interneurone with its axon in the right connective makes direct, excitatory connections with the two mesothoracic motor neurones innervating the pleuroaxillary (pleuroalar, M85) muscle of the right forewing, but not with the comparable motor neurones of the left forewing. The connections can evoke motor spikes.The interneurones also exert a powerful, but indirect effect on the homologous metathoracic pleuroaxillary motor neurones (muscle 114), and a weaker, indirect effect on subalar motor neurones of the hindwings. No connections or effects were found with other flight motor neurones, or motor neurones innervating hindleg muscles, including common inhibitor 1 which also innervates the pleuroaxillary muscle.One thoracic interneurone with its cell body in the right half of the mesothoracic ganglion and with its axon projecting ipsilaterally to the metathoracic ganglion receives a direct input from the right A4I1 interneurone.These restricted output connections suggest a role for the A4I1 interneurones in flight steering.Abbreviations DCMD descending contralateral movement detector - EPSP excitatory postsynaptic potential - TCG tritocerebral commissure giant (interneurone)  相似文献   

19.
运动过程的网络逻辑——从离子通道到动物行为   总被引:1,自引:0,他引:1  
GRILLNER Sten 《生命科学》2008,20(5):695-701
为了揭示神经网络在脊椎动物运动中所行使的内在功能,作者开发了七鳃鳗这种低等脊椎动物模型。在这套系统中,不仅可以了解到运动模式生成网络以及激活此网络的命令系统,同时还可以在运动中研究方向控制系统和变向控制系统。七鳃鳗的神经系统有较少的神经元,而且运动行为中的不同运动模式可以由分离的神经系统所引发。模式生成神经网络包括同侧的谷氨酸能中间神经元和对侧的抑制性甘氨酸能中间神经元。网络中的突触连接、细胞膜特性和神经递质都也已经被鉴定。运动是由脑干区域的网状脊髓神经元所引起,而这些神经元又是被问脑和中脑分离的一些运动命令神经元群所控制。因此,运动行为最初是由这两个“运动核心”所启动。而这两个运动核心被基底神经节调控,基底神经节即时地做出判断是否允许下游的运动程序启动。在静止情况下基底神经节的输出核团维持对下游不同运动核心的抑制作用,反之则去除抑制活化运动核心。纹状体和苍白球被认为是这个运动抉择系统的主要部件。根据“霍奇金一贺胥黎”模型神经元开发了这套网络模型,不同的细胞具有各自相应的不同亚型的钠、钾、钙离子通道和钙依赖的钾通道。每个模型神经元拥有86个不同区域模块以及其对应的生物学功能,例如频率控制、超极化等等。然后根据已有实验证据,利用突触将不同的模型神经元相连。而系统中的10000个神经元大致和生物学网络上的细胞数量相当。突触数量为760000。突触类型有AMPA、NMDA、glycine型。有了这样大规模的模型,不仅可以模拟肌节与肌节之间的神经网络,还可以模拟到由基底神经节开始的行为起始部分。此外,这些网络模拟还被用于一个神经机械学模型来模拟包含有推进和方向控制部分的真实运动。  相似文献   

20.
Summary Tactile stimulation of a leg of the locustSchistocerca gregaria can lead to specific reflex movements of that leg. At the same time nonspiking interneurones that are presynaptic to the participating motor neurones are excited or inhibited, suggesting that they are directly involved in these reflexes. The afferent pathways mediating these effects have been examined by recording from individual afferents and nonspiking interneurones.Afferent spikes fromtrichoid orcampaniform sensilla on specific regions of a leg evoke chemically-mediated EPSPs with a constant central latency of about 1.5 ms in certain nonspiking interneurones. The branches of an interneurone and the afferents from which it receives inputs overlap in the neuropil of the ganglion.No afferents have been found to evoke IPSPs directly in the nonspiking interneurones. Instead the inhibition is caused by a population of spiking local interneurones that are themselves excited directly by the afferents, and whose spikes evoke IPSPs in certain nonspiking interneurones.The tactile reflexes can involve movements about one or more joints of the leg, and these coordinated responses are explained by the participation of specific nonspiking interneurones that distribute the sensory inputs to the appropriate sets of motor neurones. For example, when hairs on the dorsal surface of a tarsus are touched, the tarsus is levated. This reflex involves nonspiking local interneurones which are excited directly by these hair afferents and which make direct excitatory connections with the single levator tarsi motor neurone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号