共查询到20条相似文献,搜索用时 15 毫秒
1.
Speranskaya AS Krinitsina AA Poltronieri P Fasano P Santino A Shevelev AB Valueva TA 《Biochemistry. Biokhimii?a》2005,70(3):292-299
Eighteen clones representing copies of four Kunitz-type proteinase inhibitor group B genes (PKPI-B) obtained by polymerase chain reaction cloning of potato (Solanum tuberosum L. cv. Istrinskii) genomic DNA were sequenced and analyzed. Three new genes were found and named PKPI-B1, PKPI-B2, and PKPI-B10: these were represented by five, two, and seven clones, respectively. The remaining four clones corresponded to the formerly characterized PKPI-B9 gene. These data show that at least four PKPI-B encoding genes are harbored in the genome of potato cv. Istrinskii. Their analysis suggests that variability of PKPI-B encoding genes in potato is limited and could be explained by cross-hybridization events in the ancestor forms rather than by random mutagenesis. 相似文献
2.
Kazutoshi Yamagishi Cristina Mitsumori Kiyoshi Takahashi Kaien Fujino Yasunori Koda Yoshio Kikuta 《Plant molecular biology》1993,21(3):539-541
Messenger RNAs of a potato (Solanum tuberosum L.) Kunitz-type proteinase inhibitor(s) (PKPI) were present in potato disks excised from tubers stored for 14 months (old tubers) or 2 months (young tubers) after harvest, and disappeared during the aseptic culture. The PKPI mRNA accumulation was found to be induced in potato disks from the old tubers by the addition of jasmonic acid (JA) [3-oxo-2-(2-cis-pentenyl)-cyclopentane-1-acetic acid]. 相似文献
3.
Jean Charles Leplé Michel Bonadé-Bottino Sylvie Augustin Gilles Pilate Véronique Dumanois Lê Tân André Delplanque Daniel Cornu Lise Jouanin 《Molecular breeding : new strategies in plant improvement》1995,1(4):319-328
The aim of this study was to test the potential of proteinase inhibitors to controlChrysomela tremulae, a beetle that causes severe damage in young plantations and in short-rotation intensive culture (SRIC) of poplar. As a first step, cysteine proteinases were determined to be the major digestive proteinases ofC. tremulae and oryzacystatin OCI, a cysteine proteinase inhibitor, was shown to inhibit this activityin vitro. The gene encoding OCI was introduced into poplar (Populus tremula ×P. tremuloides) and transgenic plants expressing OCI at a high level were selected. Feeding tests on these transgenic plants demonstrate the toxicity of OCI-producing poplar leaves againstC. tremulae larvae.J.C. Leplé and M. Bonadé-Bottino contributed equally to the research presented in this paper. 相似文献
4.
Trypsin inhibitors have been found in various animals, plants and microorganisms.There were two types of trypsin inhibitors in soybean including Bowman-Birk protease inhibitors(BBI) and Kunitz in-hibitors(KTI).The different BBI genes from wild soybean(G.soja) and cultivated soybean(G.max) formed a multigene family.We constructed a cDNA library of cultivar 'SuiNong 14' seed at the R7 growth stage using the SMART Kit.Seventeen contigs or singletons were highly homologous to soy-bean protease inhibitors.Contigs of 5, 35, 8 and 9 were highly homologous to BBI family members BBI-A1, BBI-A2, BBI-C and BBI-D, respectively.Sequence analyses showed there were novel allelic varia-tions among the 4 BBI members in SuiNong 14.Based on the comparison of soybean seed cDNA li-braries from different developmental stages, it was apparent that the expression of trypsin inhibitors increased during seed development in soybean.Phylogenetic analysis of BBI gene sequences among dicotyledonous and monocotyledonous plants demonstrated that these genes shared a common pro-genitor. 相似文献
5.
Brunelle F Girard C Cloutier C Michaud D 《Archives of insect biochemistry and physiology》2005,60(1):20-31
Protein engineering approaches are currently being devised to improve the inhibitory properties of plant proteinase inhibitors against digestive proteinases of herbivorous insects. Here we engineered a potent hybrid inhibitor of aspartate and cysteine digestive proteinases found in the Colorado potato beetle, Leptinotarsa decemlineata Say. Three cathepsin D inhibitors (CDIs) from stressed potato and tomato were first compared in their potency to inhibit digestive cathepsin D-like activity of the insect. After showing the high inhibitory potency of tomato CDI (M(r) approximately 21 kDa), an approximately 33-kDa hybrid inhibitor was generated by fusing this inhibitor to the N terminus of corn cystatin II (CCII), a potent inhibitor of cysteine proteinases. Inhibitory assays with recombinant forms of CDI, CCII, and CDI-CCII expressed in Escherichia coli showed the CDI-CCII fusion to exhibit a dual inhibitory effect against cystatin-sensitive and cathepsin D-like enzymes of the potato beetle, resulting in detrimental effects against 3rd-instar larvae fed the hybrid inhibitor. The inhibitory potency of CDI and CCII was not altered after their fusion, as suggested by IC(50) values for the interaction of CDI-CCII with target proteinases similar to those measured for each inhibitor. These observations suggest the potential of plant CDIs and cystatins as functional inhibitory modules for the design of effective broad-spectrum, hybrid inhibitors of herbivorous insect cysteine and aspartate digestive proteinases. 相似文献
6.
Effect of chronic ingestion of the cysteine proteinase inhibitor, E-64, on Colorado potato beetle gut proteinases 总被引:1,自引:0,他引:1
Caroline J. Bolter Marysia Latoszek-Green 《Entomologia Experimentalis et Applicata》1997,83(3):295-303
Chronic ingestion of the highly active, specific cysteine proteinase inhibitor, E-64, has a profound effect on Colorado potato beetle (CPB) larval growth, development and survival, as well as on adult fecundity. However, the number of insects surviving to the adult stage did not decrease below 26% with increasing E-64 concentration above 1.5 g E-64 cm–2 leaf surface. The development time to the pupal stage was increased from 13 days, when larvae were reared on control leaves, to 21 days at a concentration of 1.5 g E-64 cm–2 . The most significant effect of dietary E-64 was on adult fecundity, with mated females reared on untreated leaves laying an average 62 ± 5.7 eggs daily in the first 10 days, and those maintained on 0.5 g E-64 cm–2, laying only 16 ± 2.4 eggs day–1. Females given 1 g E-64 cm–2 laid few if any eggs, but started producing egg masses as large as control insects about 5 days after being switched to control leaves. These effects on the insect life cycle were directly related to the degree of inhibition of cysteine proteinase activity in gut extracts. The general proteinase activity in control extracts was 6.5 ± 0.16 units min–1 mg gut–1, which decreased to 1.9 ± 0.16 in guts of insects reared on 1 g E-64 cm–2. The proportion of proteinase activity inhibitable by E-64 decreased from 66% in control guts to 10-15% in guts from larvae reared on 1 g E-64 cm–2. The aspartate proteinase inhibitor, pepstatin, decreased proteinase activity by 35% in control guts. There was no induction of pepstatin-inhibitable proteinases in response to inhibition by E-64, and no inhibition of gut enzyme activity by soybean trypsin inhibitor from larvae fed any of the E-64 concentrations. This study demonstrates that proteinase levels must be significantly reduced to have a pronounced effect on larval growth and survival, while fecundity of mated females is affected by lower concentrations of inhibitor. It also suggests that the CPB may be a difficult pest to control using a more specific, plant-derived cysteine proteinase inhibitor, such as oryzacystatin. 相似文献
7.
A low-Mr tight binding proteinase inhibitor was purified from bovine muscle by alkaline denaturation of cysteine proteinases, gel filtration on Sexphadex G-75 and affinity chromatography on carboxymethyl-papain-Sepharose. Chromatofocusing separated three isoforms which are similar in their Mr of about 14 000, their stability with heating at 80°C and their inhibitory activity towards cathepsin H, cathepsin B and papain. The equilibrium constants (Ki) were determined for these three cysteine proteinases but for cathepsin H, association (kass) and dissociation (kdiss) rate constants were also evaluated. Ki values of 56 nM and 8.4 nM were found for cathepsin B and cathepsin H, respectively. For papain, Ki was in the range of 0.1–1 nM. The kinetic features of enzyme-inhibitor binding suggest a possible role for this low-Mr protein inhibitor in controlling ‘in vivo’ cathepsin H proteolytic activity. With regard to cathepsin B, such a physiological role was less evident. 相似文献
8.
Cristina Mitsumori Kazutoshi Yamagishi Kaien Fujino Yoshio Kikuta 《Plant molecular biology》1994,26(3):961-969
Antiserum against a potato Kunitz-type proteinase inhibitor (PKPI) expressed in Escherichia coli was produced. In immunoblotting assays of proteins from potato tubers cultured in vitro, three proteins reacted to the antiserum, two of 20 kDa and one of 10 kDa. Their N-termini were sequenced. While the 20 kDa proteins showed 59 and 90% identity to PKPI, the 10 kDa one had 65% identity to soybean C-II proteinase inhibitor. Characterization of the temporal expression of these proteins showed that both could be detected from 10 days after induction of tuberization (DAI) in vitro, but the times when maximum amounts of PKPI and 10 kDa protein could be detected were different, corresponding to 22 and 32 DAI, respectively. The amounts of these proteins decreased in the following stages, and no positive reaction of the antiserum with mature tuber proteins could be found. The 20 kDa proteins were also detected in early stages of development of potato tubers grown in the field, indicating that these proteins are expressed during normal tuber development, and differ from the PKPIs reported previously. 相似文献
9.
We have determined that a nodule-specific cDNA clone (GmCysP1), obtained from a soybean root nodule-specific EST pool, encodes cysteine proteinase. Its amino acid sequence homology, as
well as the conservation of typical motifs and amino acid residues involved in active site formation, shows that GmCysP1 can
be classified as a legumain (C13) family cysteine proteinase, belonging to clan CD. Moreover, based on its expression patterns,GmCysP1 is a nodule-specific cysteine proteinase gene that is possibly associated with nodule development or senescence. Our genomic
Southern analysis also suggests thatGmCysP1 is a member of a multigene family. Therefore, we propose that GmCysP1 is the first to be identified as a nodule-specific
and senescence-related cysteine proteinase that belongs to the legumain family from soybean. 相似文献
10.
Role of the single cysteine residue, Cys 3, of human and bovine cystatin B (stefin B) in the inhibition of cysteine proteinases 下载免费PDF全文
Cystatin B is unique among cysteine proteinase inhibitors of the cystatin superfamily in having a free Cys in the N-terminal segment of the proteinase binding region. The importance of this residue for inhibition of target proteinases was assessed by studies of the affinity and kinetics of interaction of human and bovine wild-type cystatin B and the Cys 3-to-Ser mutants of the inhibitors with papain and cathepsins L, H, and B. The wild-type forms from the two species had about the same affinity for each proteinase, binding tightly to papain and cathepsin L and more weakly to cathepsins H and B. In general, these affinities were appreciably higher than those reported earlier, perhaps because of irreversible oxidation of Cys 3 in previous work. The Cys-to-Ser mutation resulted in weaker binding of cystatin B to all four proteinases examined, the effect varying with both the proteinase and the species variant of the inhibitor. The affinities of the human inhibitor for papain and cathepsin H were decreased by threefold to fourfold and that for cathepsin B by approximately 20-fold, whereas the reductions in the affinities of the bovine inhibitor for papain and cathepsins H and B were approximately 14-fold, approximately 10-fold and approximately 300-fold, respectively. The decreases in affinity for cathepsin L could not be properly quantified but were greater than threefold. Increased dissociation rate constants were responsible for the weaker binding of both mutants to papain. By contrast, the reduced affinities for cathepsins H and B were due to decreased association rate constants. Cys 3 of both human and bovine cystatin B is thus of appreciable importance for inhibition of cysteine proteinases, in particular cathepsin B. 相似文献
11.
Rawdkuen S Benjakul S Visessanguan W Lanier TC 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2006,144(4):544-552
A high-molecular-weight cysteine proteinase inhibitor (CPI) was purified from chicken (Gallus gallus) plasma using polyethylene glycol (PEG) fractionation and affinity chromatography on carboxymethyl–papain–Sepharose-4B. The CPI was purified 96.8-fold with a yield of 28.9%. Based on inhibitory activity staining for papain, CPI was shown to have an apparent molecular mass of 122 kDa. No inhibitory activity was obtained under reducing condition, indicating that CPI from chicken plasma was stabilized by disulfide bonds. CPI was stable in temperature ranges from 40 to 70 °C for 10 min; however, more than 50% of the inhibitory activity towards papain was lost within 30 min of heating at 90 °C. CPI was stable in the presence of salt up to 3%. The purified CPI exhibited the inhibitory activity toward autolysis of arrowtooth flounder (Atheresthes stomias) and Pacific whiting (Merluccius productus) natural actomyosin (NAM) in a concentration-dependent manner. 相似文献
12.
Maarten A. Jongsma Petra L. Bakker Willem J. Stiekema Dirk Bosch 《Molecular breeding : new strategies in plant improvement》1995,1(2):181-191
Potato proteinase inhibitor II (PI2) is a serine proteinase inhibitor composed of two domains that are thought to bind independently to proteinases. To determine the activities of each domain separately, various inactive and active domain combinations were constructed by substituting amino acid residues in the active domains by alanines. These derivatives were expressed as soluble protein inEscherichia coli and exposed on M13 phage as fusions to gene 3 in a phagemid system for monovalent phage display. Inactivation of both active domains by Ala residues reduced binding of phage to trypsin and chymotrypsin by 95%. Ten times more phage were bound to proteinases by domain II compared to domain I, while a point mutation (Leu5 Arg) altered the binding specificity of domain I of PI2 phage from chymotrypsin to trypsin. The mutants were used to show that functional PI2 phage mixed with nonfunctional PI2 phage could be enriched 323 000-fold after three rounds of panning. Thus, these results open up the possibility to use phage display for the selection of engineered PI2 derivatives with improved binding characteristics towards digestive proteinases of plants pests.The nucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession number L37519 (p303.51). 相似文献
13.
Bleomycin hydrolase: molecular cloning, sequencing, and biochemical studies reveal membership in the cysteine proteinase family 总被引:4,自引:0,他引:4
Bleomycin (BLM) hydrolase catalyzes the inactivation of the antitumor drug BLM and is believed to protect normal and malignant cells from BLM toxicity. The normal physiological function of BLM hydrolase is not known. We now provide evidence for its membership in the cysteine proteinase family. BLM hydrolase was purified to homogeneity from rabbit lungs, and a partial amino acid sequence was determined from a tryptic digest peptide. On the basis of this sequence a 36-mer oligonucleotide was synthesized. The 36-mer oligonucleotide probe hybridized to a single mRNA species of 2.5 kb from several species and was used to isolate an 832-bp cDNA insert from a lambda gt11 rabbit liver cDNA library. This insert encoded the tryptic digest peptide previously identified in rabbit lung BLM hydrolase by amino acid sequencing. Analysis of the predicted amino acid sequence coded by the 832-bp BLM hydrolase cDNA fragment indicated no significant homology with any currently known proteins except for a 15 amino acid portion, which displayed remarkable homology with the active site of cysteine proteinases. Within this active-site region, 10 of the amino acid residues of papain and 9 of aleurain, cathepsin H, and cathepsin L were identical with those of rabbit liver BLM hydrolase. The catalytic cysteine of thiol proteinases was also conserved in BLM hydrolase, and cysteine proteinase specific inhibitors, such as E-64, were found to be potent inhibitors of BLM hydrolase activity. Furthermore, bleomycin hydrolase exhibited cathepsin H like enzymatic activity. Bleomycin hydrolase had, however, no significant cathepsin B or L activities.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
Human tissue extracts contained two high Mr proteinases active in hydrolyzing the fluorogenic substrate Cbz-phe-arg-aminomethylcoumarin. By gel filtration chromatography, cathepsins J and K had apparent molecular weights of 230,000 and 650,000, respectively. Both enzymes were cysteine proteinases with optimum activity at pH 6.2-6.8; neither had aminopeptidase activity. Human kidney, lung and spleen were rich sources of these enzymes, while liver contained moderate amounts. Cathepsins J and K were partially characterized and appeared to differ from the mammalian high Mr cysteine proteinases described in the literature. In rat liver and kidney and in mouse liver, cathepsin J was localized in the particulate fraction, whereas cathepsin K was not detected in these tissues. 相似文献
15.
Speranskaya AS Krinitsina AA Revina TA Gerasimova NG Keruchen'ko YS Shevelev AB Valueva TA 《Biochemistry. Biokhimii?a》2006,71(11):1176-1182
The gene PKPI-B10 [AF536175] encoding in potato (Solanum tuberosum L., cv. Istrinskii) a Kunitz-type protein inhibitor of proteinases (PKPI) has been cloned into the pET23a vector and then expressed in Escherichia coli. The recombinant protein PKPI-B10 obtained as inclusion bodies was denatured, separated from admixtures by ion-exchange fast protein liquid chromatography (FPLC) on MonoQ under denaturing conditions, and renatured. The native protein was additionally purified by ion-exchange FPLC on DEAE-Toyopearl. The PKPI-B10 protein effectively inhibits the activity of trypsin, significantly weaker suppresses the activity of chymotrypsin, and has no effect on other serine proteinases: human leukocyte elastase, subtilisin Carlsberg, and proteinase K, and also the plant cysteine proteinase papain. 相似文献
16.
Natalia N.S. Nunes Rodrigo S. Ferreira Leonardo F.R. de Sá Antônia Elenir A. de Oliveira Maria Luiza V. Oliva 《Biochemistry and Biophysics Reports》2021
This study focused on the characterization of a novel cysteine proteinase inhibitor from Enterolobium contortisiliquum seeds targeting the inhibition of the growth of Callosobruchus maculatus larvae, an important cosmopolitan pest of the cowpea Vigna unguiculata during storage. The inhibitor was isolated by ion-exchange besides of size exclusion chromatography. EcCI molecular mass is 19,757 Da, composed of two polypeptide chains. It strongly inhibits papain (Kiapp 0.036 nM) and proteinases from the midguts of C. maculatus (80 μg mL?1, 60% inhibition). The inhibitory activity is reduced by 40% after a heat treatment at 100 °C for 2 h. The protein displayed noxious activity at 0.5% and 1% (w/w) when incorporated in artificial seeds, reducing larval mass in 87% and 92%, respectively. Treatment of C. maculatus larvae with conjugated EcCI-FIT and subsequent biodistribution resulted in high fluorescence intensity in midguts and markedly low intensity in malpighian tubules and fat body. Small amounts of labeled proteins were detected in larvae feces. The detection of high fluorescence in larvae midguts and low fluorescence in their feces indicate the retention of the FITC conjugated EcCI inhibitor in larvae midguts. These results demonstrate the potential of the natural protein from E. contortisiliquum to inhibit the development of C. maculatus. 相似文献
17.
L型半胱氨酸蛋白酶基因 (Cathepsin L-like cysteine proteinase gene) 为与植物寄生线虫寄生能力相关的多功能基因。运用RT-PCR和RACE的方法从马铃薯腐烂茎线虫Ditylenchus destructor中克隆出1个L型半胱氨酸蛋白酶新基因Dd-cpl-1 (GenBank登录号为GQ180107)。该基因Dd-cpl-1 cDNA全长序列含有1个1 131 bp的开放性阅读框 (ORF),编码376个氨基酸残基,其5′末端及3′末端分别含有29 bp和159 bp的非编码区 (UTR)。Dd-cpl-1内含子外显子结构分析结果表明,其基因组序列包含7个内含子,且各内含子两端剪接位点序列遵守GT/AG规则。Dd-cpl-1基因推定的蛋白Dd-CPL-1与松材线虫L型半胱氨酸蛋白酶高度同源,一致性达到77%。以不同物种中L 型半胱氨酸蛋白酶氨基酸序列进行比对分析,推测推定的蛋白 Dd-CPL-1含有L型半胱氨酸蛋白酶基因家族高度保守的催化三联体 (Cys183,His322 和Asn343) 以及ERFNIN基系和GNFD基系。半胱氨酸蛋白酶系统发育分析表明,Dd-cpl-1 属于由L型半胱氨酸蛋白酶组成的进化分支。Dd-cpl-1的这些序列特征进一步表明其为L型半胱氨酸蛋白酶基因。这是首次在马铃薯腐烂茎线虫中克隆到的L型半胱氨酸蛋白酶,为今后在蛋白水平对其进行进一步的功能分析提供基础。 相似文献
18.
The bovine tick Rhipicephalus (Boophilus) microplus is a blood-sucking animal, which is responsible for Babesia spp and Anaplasma marginale transmission for cattle. From a B. microplus fat body cDNA library, 465 selected clones were sequenced randomly and resulted in 60 Contigs. An open reading frame (ORF) contains 98 amino acids named Bmcystatin, due to 70% amino acid identity to a classical type 1 cystatin from Ixodes scapularis tick (GenBank Accession No. ). The Bmcystatin amino acid sequence analysis showed two cysteine residues, theoretical pI of 5.92 and M(r) of 11 kDa. Bmcystatin gene was cloned in pET 26b vector and the protein expressed using bacteria Escherichia coli BL21 SI. Recombinant Bmcystatin (rBmcystatin) purified by affinity chromatography on Ni-NTA-agarose column and ionic exchange chromatography on HiTrap Q column presented molecular mass of 11 kDa, by SDS-PAGE and the N-terminal amino acid sequenced revealed unprocessed N-terminal containing part of pelB signal sequence. Purified rBmcystatin showed to be a C1 cysteine peptidase inhibitor with K(i) value of 0.1 and 0.6 nM for human cathepsin L and VTDCE (vitellin degrading cysteine endopeptidase), respectively. The rBmcystatin expression analyzed by semi-quantitative RT-PCR confirmed the amplification of a specific DNA sequence (294 bp) in the fat body and ovary cDNA preparation. On the other hand, a protein band was detected in the fat body, ovary, and the salivary gland extracts using anti-Bmcystatin antibody by Western blot. The present results suggest a possible role of Bmcystatin in the ovary, even though the gene was cloned from the fat body, which could be another site of this protein synthesis. 相似文献
19.
A 711-bp cDNA encoding a cysteine proteinase inhibitor (cystatin) was isolated from a cDNA library prepared from 7–10 cmSorghum bicolor seedlings. The nearly full-length cDNA clone encodes 130 amino acid residues, which include the Gln-Val-Val-Ala-Gly motif, conserved among most of the known cystatins as a probable binding site for cysteine proteinases. The amino acid sequence of sorghum cystatin deduced from the cDNA clone shows significantly homology to those of other plant cystatins. The sorghum cystatin expressed inE. coli showed a strong papain-inhibitory activity. 相似文献
20.
Joon Ki Hong Jung Eun Hwang Woo Sik Chung Kyun Oh Lee Young Ju Choi Sang Wan Gal Beom -Seok Park Chae Oh Lim 《Journal of Plant Biology》2008,51(5):347-353
Phytocystatins are plant cysteine proteinase inhibitors that regulate endogenous and heterologous cysteine proteinases of
the papain family. A cDNA encoding the phytocystatin BrCYS1 (Brassica rapa cysteine proteinase inhibitor 1 ) has been isolated from Chinese cabbage (B. rapa subsp.pekinensis) flower buds. In order to explore the role of this inhibitory enzyme, tobacco plants (Nicotiana tabacum L. cv. Samson) containing altered amounts of phytocystatin were generated by over-expressingBrCYS1 cDNA in either the sense or the antisense configuration. The resulting plants hadin vitro enzyme inhibitory activities that were over 10% of those detected in wild type plants. The transgenic plants exhibited retarded
seed germination and seedling growth and a reduced seed yield, whereas these properties were enhanced in antisense plants.
These data suggest that BrCYS1 participates in the control of seed germination, post-germination and plant growth by regulating
cysteine peptidase activity. 相似文献