首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The intergenic spacer region of the Xenopus laevis ribosomal DNA contains multiple elements which are either 60 or 81 base pairs long. Clusters of these elements have previously been shown to act as position- and distance-independent enhancers on an RNA polymerase I promoter when located in cis. By a combination of deletion and linker scanner mutagenesis we show that the sequences essential for enhancer function are located within a 56-base-pair region that is present in both the 60- and 81-base-pair repeats. Within the 56-base-pair region one linker scanner mutation was found to be relatively neutral, suggesting that each enhancer element may be composed of two smaller domains. Each 56-base-pair region appears to be an independent enhancer with multiple enhancers being additive in effect. We review the current evidence concerning the mechanism of action of these enhancers.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Bacteriocin production in Lactobacillus plantarum C11 is regulated by a three-component signal transduction system comprising a peptide pheromone (PlnA), a histidine protein kinase (PlnB), and two homologous response regulators (RRs; PlnC and PlnD). Both RRs are DNA-binding proteins that bind to promoter-proximal elements in the pln regulon. The binding site for the two regulators consists of two 9-bp direct repeats, that conform to the consensus sequence 5'-TACGTTAAT-3', and the repeats are separated by an intervening 12-bp AT-rich spacer region. In the present work, the plhA promoter was used as a model to evaluate the significance of the binding sequence and conserved promoter arrangement. Point substitutions in the consensus sequence, particularly those in invariant positions, either abolished or significantly reduced binding of PlnC and PlnD. Both regulators bind as homodimers to DNA fragments containing a complete set of regulatory elements, while removal of either repeat, or alterations in the length of the spacer region, significantly weakened binding of both protein dimers. DNase I footprinting demonstrated that PlnC and PlnD both bind to, and protect, the direct repeats. By fusing the plnA promoter region to the beta-glucuronidase (GUS) gene, it was shown that promoter activity is dependent on an intact set of accurately organized repeats. The in vitro and in vivo results presented here confirm the involvement of the repeats as regulatory elements in the regulation of bacteriocin production.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号